958 resultados para EXTRACELLULAR MATRIX REMODELING
Resumo:
Evolutionary survival of a species is largely a function of its reproductive fitness. In mammals, a sparsely populated and widely dispersed network of hypothalamic neurons, the gonadotropin-releasing hormone (GnRH) neurons, serve as the pilot light of reproduction via coordinated secretion of GnRH. Since it first description, human GnRH deficiency has been recognized both clinically and genetically as a heterogeneous disease. A spectrum of different reproductive phenotypes comprised of congenital GnRH deficiency with anosmia (Kallmann syndrome), congenital GnRH deficiency with normal olfaction (normosmic idiopathic hypogonadotropic hypogonadism), and adult-onset hypogonadotropic hypogonadism has been described. In the last two decades, several genes and pathways which govern GnRH ontogeny have been discovered by studying humans with GnRH deficiency. More importantly, detailed study of these patients has highlighted the emerging theme of oligogenicity and genotypic synergism, and also expanded the phenotypic diversity with the documentation of reversal of GnRH deficiency later in adulthood in some patients. The underlying genetic defect has also helped understand the associated nonreproductive phenotypes seen in some of these patients. These insights now provide practicing clinicians with targeted genetic diagnostic strategies and also impact on clinical management.
Resumo:
PURPOSE: To present the light and electron microscopic findings of a unique corneal dystrophy never before described in a German family carrying the Gly623Asp Mutation of the TGFBI gene with late clinical onset. DESIGN: Experimental study. PARTICIPANTS: Four affected and 6 nonaffected family members. METHODS: Slit-lamp examination, photographic documentation, and isolation of genomic DNA from peripheral blood leucocytes obtained from each family member examined. Exons 3, 4, 5, and 11 to 14 of the TGFBI gene were amplified and sequenced in these family members. Five corneal buttons of 3 affected siblings were excised at the time of penetrating keratoplasty. Light and electron microscopic examination were performed including immunohistochemistry with antibodies against keratoepithelin (KE) 2 and 15. MAIN OUTCOME MEASURES: Clinical and histologic characteristics of corneal opacification in affected patients and presence of coding region changes in the TGFBI gene. RESULTS: The specimens showed destructive changes in Bowman's layer and the adjacent stroma. Patchy Congo red-positive amyloid deposits were found within the epithelium in 1 cornea, in Bowman's layer and in the anterior stroma of all specimens also showing KE2, but not KE15, immunostaining. Electron microscopy revealed deposits mainly located in the anterior stroma and Bowman's layer and in small amounts in the basal area of some epithelial cells. The destroyed areas were strongly Alcian blue-positive, the Masson Trichrome stain proved mainly negative for the deposits. All affected but none of the unaffected family members had a heterozygous missense mutation in exon 14 of the TGFBI gene (G-->A transition at nucleotide 1915) replacing glycin by aspartic acid amino acid (Gly623Asp) at position 623 of the KE protein. CONCLUSIONS: In contrast with the patient carrying the Gly623Asp mutation of the TGFBI gene described by Afshari et al, our cases presented with Salzmann's nodular degeneration-like clinical features and their specimens contained KE2-positive amyloid. The reason for this now "meeting the expectation histologic phenotype" is unclear. The histologic findings emphasize that this is a unique corneal dystrophy, which shares no clinical characteristics with Reis-Bücklers' dystrophy and should be treated as a distinct entity. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
Biocorrosion means any process of corrosion in wich microorganisms are somehow involved. As far as the petroleum industry is concerned, the anaerobic type is the more important, with Sulphate-Reducing Bacteria (SRB) accouting for half of the described processes. SRB are obligate anaerobs that use sulphur, sulphate or other oxidized sulphur compounds as oxidizing agents when decomposing organic material. A typical product of SRB metabolism, hydrogen sulphide -H2S-, is extremely toxic. In the present work we review the literature on mechanisms underlying biocorrosive process in wich SRB are involved and summarize some of the ultrastructural and eletrochemical work developed using SRB obtained from water injection flow in wells located on PETROBRAS offshore marine plataforms, sampled directly in the field over metallic probes, or cultured under laboratory conditions. Biofilms develop when SRB adhere to inert surfaces. A high diversity of morphological types is found inside these biofilms. Their extracellular matrix is highly hydrated and mainly anionic, as shown by its avid reaction with cationic compounds like ruthenium red. We have noted that variations in iron contet lead to interesting changes in the ultrastructure of the bacterial cell coat and also in the rate of corrosion induced in metallic test cupons. Since routine methods to prevent and treat SRB contamination and biodeterioration involve the use of biocides that are toxic and always have some environmental impact, an accurate diagnosis of biocorrosion is always required prior to a treatment decision. We developed a method that detects and semi-quantifies the presence of living or dead SRB by using free silver potentials as an indicator of corrosive action by SRB-associated sulphides. We found a correlation between sulphide levels (determined either by spectrophotometry, or using a silver electrode -E(Ag)- that measured changes in free potentials induced by the presence of exogeneously added sulphide) and SRB concentration (enumerated by a culturing method). E (Ag) was characterized under a variety of conditions andwas found to be relatively immune to possible interference resulting from aeration of media or from the psence of iron corrosion products. The method offers a simple, rapid, and effective means of diagnosing biocorrosive processes prior to their control.
Resumo:
BACKGROUND/AIM: Both steatosis and insulin resistance have been linked to accelerated fibrosis in chronic hepatitis C. Connective tissue growth factor (CTGF) plays a major role in extracellular matrix production in fibrotic disorders including cirrhosis, and its expression is stimulated in vitro by insulin and glucose. We hypothesized that CTGF may link steatosis, insulin resistance and fibrosis. METHODS: We included 153 chronic hepatitis C patients enrolled in the Swiss Hepatitis C Cohort Study and for whom a liver biopsy and plasma samples were available. CTGF expression was assessed quantitatively by immunohistochemistry. In 94 patients (57 with genotypes non-3), plasma levels of glucose, insulin and leptin were also measured. CTGF synthesis was investigated by immunoblotting on LX-2 stellate cells. RESULTS: Connective tissue growth factor expression was higher in patients with steatosis (P=0.039) and in patients with fibrosis (P=0.008) than those without these features. CTGF levels were neither associated with insulinaemia or with glycaemia, nor with inflammation. By multiple regression analysis, CTGF levels were independently associated with steatosis, a past history of alcohol abuse, plasma leptin and HCV RNA levels; when only patients with genotypes non-3 were considered, CTGF levels were independently associated with a past history of alcohol abuse, plasma leptin levels and steatosis. Leptin stimulated CTGF synthesis in LX-2 cells. CONCLUSIONS: In patients with chronic hepatitis C and steatosis, CTGF may promote fibrosis independently of inflammation. CTGF may link steatosis and fibrosis via increased leptin levels.
Resumo:
Recognition by CD8+ cytotoxic T lymphocytes (CTLs) of antigenic peptides bound to major histocompatibility class (MHC) I molecules on target cells leads to sustained calcium mobilization and CTL degranulation resulting in perforin-dependent killing. We report that beta1 and beta3 integrin-mediated adhesion to extracellular matrix proteins on target cells and/or surfaces dramatically promotes CTL degranulation. CTLs, when adhered to fibronectin but not CTL in suspension, efficiently degranulate upon exposure to soluble MHC.peptide complexes, even monomeric ones. This adhesion induces recruitment and activation of the focal adhesion kinase Pyk2, the cytoskeleton linker paxillin, and the Src kinases Lck and Fyn in the contact site. The T cell receptor, by association with Pyk2, becomes part of this adhesion-induced activation cluster, which greatly increases its signaling.
Resumo:
This paper is written in the context of our changing preception of the immunological system as a system with possible biological roles exceding the prevailung view of a system concerned principally with the defense against external pathogens. The view discussed here relates the immunological system inextricably to the metabolism of iron, the circulation of the blood and the resolution of the evolutionary paradox created by oxygen and iron. Indirect evidence for this inextricable relationship between the two systems can be derived from the discrepancy between the theoretical quasi-impossibility of the existence of an iron deficiency state in the adult and the reality of the WHO numbers of people in the world with iron deficiency anemia. With mounting evidence that TNF, IL-1, and T lymphocyte cytokines affect hemopoieisis and iron metabolism it is possible that the reported discrepancy is a reflection of that inextricable interdependence between the two systems in the face of infection. Further direct evidence for a relationship between T cell subset numbers and iron metabolism is presented from the results of a study of T cell populations in patients with hereditary hemochromatosis. The recent finding of a correlation between low CD8+ lymphocite numbers, liver demage associated with HCVpositivity and severity of iron overload in B-thalassemia major patients (umpublished data of RW Grandy; P. Giardina, M. Hilgartner) concludes this review.
Resumo:
Human nasal polyps outgrowth culture were used to study the adhesion of Pseudomonas aeruginosa to respiratory cells. By transmission electron microscopy, bacteria associated with ciliated cells were identified trapped at the extremities of cilia, usually as aggregates of several bacterial cells. They were never seen at the interciliary spaces or attached along cilia. Bacteria were also seen to adhere to migrating cells of the periphery of the outgrowth culture. Using a model of repair of wounded respiratory epithelial cells in culture, we observed that the adhesion of P. aeruginosa to migrating cells of the edges of the repairing wounds was significantly higher than the adhesion to non-migrating cells and that adherent bacteria were surrounded by a fibrocnectin-containing fibrillar material The secretion of extracellular matrix components is involved in the process of epithelium repair following injury. To investigate the molecular basis of P. aeruginosa adhesion to migrating cells, bacteria were treated with a fibronectin solution before their incubation with the respiratory cells. P. aeruginosa treatment by fibronectin significantly increased their adhesion to migrating cells. Accordingly, we hypothesize that during cell migration, fibronectin secreted by epithelial cells may favour P. aeruginosa adhesion by establishing a bridge between the bacteria and the epithelial cell receptors. Such a mechanism may represent a critical step for P. aeruginosa infection of healing injured epithelium.
Resumo:
The thymus is a central lymphoid organ, in wich T cell precursors differentiale and generate most of the so-called T cell reprtoire. Along with a variety of acute infectious diseases, we and others determined important changes in both microenvironmental and lymphoid compartments of the organ. For example, one major and common feature observed in acute viral, bacterial and parasitic diseases, is a depletion of cortical thymocytes, mostly those bearing the CD4-CD8 double positive phenotype. This occurs simmultaneously to the relative enrichment in medullary CD4 or CD8 single positive cells, expressing high densities of the CD3 complex. Additionally we noticed a variety of changes in the thymic microenvironment (and particularly is epithelial component), comprising abnormal location of thymic epithelial cell subsets as well has a denser Ia-bearing cellular network. Moreover, the extracellular matrix network was altered with an intralobular increase of basement membrane proteins that positively correlated with the degree of thymocyte death. Lastly, anti-thymic cell antibodies were detected in both human and animal models of infectious diseases, and in some of them a phenomenon of molecular mimicry could be evidenced. Taken together, the data receiwed herein clearly show that the thymus should be regarded as a target in infectious diseases.
Resumo:
We herein present an improved assay for detecting the presence of Trypanosoma cruzi in infected cultures. Using chagasic human sera (CHS), we were able to detect T. cruzi infection in primary cultures of both peritoneal macrophages and heart muscle cells (MHC). To avoid elevated background levels - hitherto observed in all experiments especially in those using HMC - CHS were preincubated with uninfected cells in monolayers or suspensions prior to being used for detection of T. cruzi in infected monolayers. Preincubation with cell suspensions gave better results than with monolayers, reducing background by up to three times and increasing sensitivity by to twenty times. In addition, the continous fibroplastic cell line L929 was shown to be suitable for preadsorption of CHS. These results indicate that the high background levels observed in previous reports may be due to the presence of human autoantibodies that recognize surface and/or extracellular matrix components in cell monolayers. We therefore propose a modified procedure that increases the performance of the ELISA method, making it an useful tool even in cultures that would otherwise be expected to present low levels of infection or high levels of background
Resumo:
This study investigates in vitro growth of human urinary tract smooth muscle cells under static conditions and mechanical stimulation. The cells were cultured on collagen type I- and laminin-coated silicon membranes. Using a Flexcell device for mechanical stimulation, a cyclic strain of 0-20% was applied in a strain-stress-time model (stretch, 104 min relaxation, 15 s), imitating physiological bladder filling and voiding. Cell proliferation and alpha-actin, calponin, and caldesmon phenotype marker expression were analyzed. Nonstretched cells showed significant better growth on laminin during the first 8 days, thereafter becoming comparable to cells grown on collagen type I. Cyclic strain significantly reduced cell growth on both surfaces; however, better growth was observed on laminin. Neither the type of surface nor mechanical stimulation influenced the expression pattern of phenotype markers; alpha-actin was predominantly expressed. Coating with the extracellular matrix protein laminin improved in vitro growth of human urinary tract smooth muscle cells.
Resumo:
Twenty Calomys callosus, Rengger, 1830 (Rodentia-Cricetidae) were studied in the early stage of the acute schistosomal mansoni infection (42nd day). The same number of Swiss Webster mice were used as a comparative standard. Liver and intestinal sections, fixed in formalin-Millonig and embedded in paraffin, were stained with hematoxilin and eosin, PAS-Alcian Blue, pH = 1.0 and 2.5, Lennert's Giemsa, Picrosirius plus polarization microscopy, Periodic acid methanamine silver, Gomori's silver reticulin and resorcin-fuchsin. Immunohistological study (indirect immunofluorescence and peroxidase labeled extravidin-biotin methods) was done with antibodies specific to pro-collagen III, fibronectin, elastin, condroitin-sulfate, tenascin, alpha smooth muscle actin, vimentin and desmin. The hepatic granulomas were small, reaching only 27 of the volume of the hepatic Swiss Webster granuloma. They were composed mainly by large immature macrophages, often filled by schistosomal pigment, characterizing an exsudative-macrophage granuloma type. The granulomas were situated in the parenchyma and in the portal space. They were often intravascular, poor of extracellular matrix components, except fibronectin and presented, sometimes alpha smooth muscle actin and vimentin positive cells. The C. callosus intestinal granulomas were similar to Swiss Webster, showing predominance of macrophages. Therefore, the C. callosus acquire very well the Schistosoma mansoni infection, without developing strong hepatic acute granulomatous reaction, suggesting lack of histopathological signs of hypersensitivity.
Resumo:
OBJECTIVES: Tissue engineering methods can be applied to regenerate diseased, or congenitally missing, urinary tract tissues. Urinary tract tissue cell cultures must be established in vitro and adequate matrices, acting as cell carriers, must be developed. Although degradable and nondegradable polymer matrices offer adequate mechanical stability, they are not optimal for cell adherence and growth. To overcome this problem, extracellular matrix proteins, permitting cell adhesion and regulation of cell proliferation and differentiation, can be adsorbed to the surface-modified polymer. METHODS: In this study, nondegradable polymer films, poly(ethylene terephthalate), were used as an experimental model. Films were modified by graft polymerization of acrylic acid to subsequently allow collagen type I and III immobilization. The following adhesion, proliferation of human urothelial cells, and induction of their stratification were analyzed. RESULTS: Collagen adsorption on 0.2 microg/cm2 poly(acrylic acid)-grafted polymer films rendered the matrix apt for human urothelial cell adhesion and proliferation. Furthermore, stratification of urothelial cells was demonstrated on these surface-modified matrices. CONCLUSIONS: These results have shown that surface-modified polymer matrices can be used to act as cell carriers for cultured human urothelial cells. Such a cell-matrix construct could be applied in reparative surgery of the urinary tract.
Resumo:
SUMMARY : Skin wound repair is a complex and highly coordinated process, where a variety of cell types unite to regenerate the damaged tissue. Several works have elucidated cellular and molecular mechanisms, in which mesenchymal-epidermal interactions play an essential role for the regulation of skin homeostasis and repair. Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated transcription factors that belong to the nuclear receptor superfamily. Three related isotypes (PPARα, PPARß/δ and PPARγ) have been found, which exhibit distinct tissue distribution and specific physiological functions. PPARß/δ was identified as a crucial player of skin homeostasis. In the mouse skin, PPARß/δ has been described to control proliferation-differentiation state, adhesion and migration, and survival of the keratinocytes during healing. PPARß/δ has been implicated as well in the development of the hair follicles, in which mesenchymal-secreted hepatocyte growth factor (HGF) is involved. These data suggest that the biological activity of PPARß/δ is modulated by mesenchymal-epidermal interactions and that, in turn, PPARß/δ also modulates some of these signals. The aim of the present work was to elucidate the nature of the signals exchanged between the epidermis and dermis compartments, and more particularly those which are under the control of PPARß/δ. In the first part of the study, we showed that PPARß/8 in dermal fibroblasts down-regulates the mitotic activity of keratinocytes by inhibiting the IL-1 signalling pathway via the production of secreted IL-1 receptor antagonist (sIL-1Ra), a natural antagonist of this signalling. The regulation of IL-1 signalling by PPARß/δ is required for anon-pathological skin wound repair. These findings provide evidence for a novel homeostatic control of keratinocyte proliferation and differentiation mediated by the regulation of IL-1 signalling via dermal PPARß/δ fibroblasts. Proteolysis of the extracellular matrix (ECM) is a key process involved in wound repair and modifications in its activity are often associated with an alteration óf the wound closure. This process implies specific proteinases, as matrix metalloproteinases (MMPs), which are finely modulated by IL-1 signalling. In line with the first results, the second part of the work showed that MMP8 and MMP13, which are two important collagenases involved in mouse skin wound repair, are regulated by PPARß/δ. Their expression is indirectly down-regulated by dermal PPARß/δ, via the production of sIL-1Ra, resulting in the inhibition of IL-1 signalling, known to regulate the expression of numerous MMPs. We suggest that, in absence of PPARß/δ, the positive regulation of these two collagenases could participate to the delay of skin wound healing, which has been observed in mice deleted for PPARßlS. The potential therapeutic role of PPARß/b could be as well extending to inflammatory and hyperproliferative skin diseases involving IL-1 signalling, such as psoriasis or skin cancers. Quite interestingly, MMP1 (analogue of mouse MMP13) plays an essential role in human photoaging, suggesting that PPARß/δ could as well be an attractive target for photoprotection. RESUME : La cicatrisation est un processus complexe et extrêmement organisé, impliquant un grand nombre de cellules qui s'unissent pour régénérer le tissu endommagé. De nombreux travaux nous ont éclairés sur les mécanismes cellulaires et moléculaires, dans lesquels les interactions épidermo-mésenchymateuses détiennent un rôle capital à la fois dans la régulation de l'homéostasie et dans la réparation de la peau. PPAR (Peroxisome proliferatar-activated receptor), qui appartient à la superfamille des récepteurs nucléaires, se définit comme un facteur de transcription activé par des ligands très spécifiques. Trois isotypes (PPARa, PPARß/δ et PPARy) ont été décrits et sont caractérisés par une distribution tissulaire et des fonctions physiologiques clairement définies. PPARß/δ a été identifié comme étant un important acteur dans l'homéostasie de la peau. Chez la souris, il a été décrit comme contrôlant l'état de prolifération et de différenciation, le processus d'adhésion et de migration, ainsi que la survie des kératinocytes au cours de la cicatrisation. PPARßIS a également été défini comme contrôlant le développement des follicules pileux, impliquant la sécrétion par le mésenchyme du facteur de croissance HGF. Ces données suggèrent que l'activité biologique de PPARß/δ est modulée par des interactions épidermo-mésenchymateuses, et qu'en retour, il possède la capacité de moduler certains de ces signaux. L`objectif de ce travail a été d'élucider la nature des signaux échangés entre les compartiments épidermique et dermique, et plus particulièrement ceux qui sont sous le contrôle de PPARß/δ. Dans la première partie de l'étude, nous avons montré que les fibroblastes exprimant PPARß/δ réduisent l'activité mitotique des kératinocytes en inhibant la voie de signalisation IL-1, via la production de sIL-1Ra (secreted IL-1 receptor antagonist), défini comme un antagoniste naturel de cette voie de signalisation. La régulation de cette dernière par PPARß/δ est donc nécessaire pour une cicatrisation de type non pathologique. Ces résultats offrent donc une nouvelle preuve du contrôle de l'homéostasie et de l'état de prolifération/différenciation des kératinocytes par les fibroblastes exprimant PPARß/δ, en régulant la voie de signalisation IL-1. Le mécanisme de dégradation de la matrice extracellulaire (MEC) est une étape essentielle lors du processus de cicatrisation. Ainsi des modifications de cette activité protéolytïque sont souvent associées à une altération de la fermeture de la plaie. Ce processus implique des protéinases, comme les MMPs, qui sont finement modulés par la voie de signalisation IL-1. En accord avec les premiers résultats, la seconde partie des nos travaux a montré que les collagénases MMP8 et MMP13, connues pour être d'importantes molécules impliquées lors de la réparation tissulaire chez la souris, sont modulées par l'activité de PPARß/δ. Leurs expressions sont indirectement régulées par PPARß/δ, via la production. de sIL-1 Ra, entraînant ainsi l'inhibition de la voie de signalisation IL-1, décrite pour réguler l'expression de nombreuses MMPs, Nous suggérons donc qu'en absence de PPARß/δ, la régulation de ces deux collagénases pourrait être impliquée dans le retard de cicatrisation, observé chez les souris déficientes pour PPARß/δ. L'activité biologique de PPARß/δ pourrait être ainsi étendue à des maladies hyperproliferatives et inflammatoires de la peau, impliquant la voie de signalisation IL-1, comme le psoriasis ou certains cancers de la peau, et ce à des fins thérapeutiques. Il est aussi intéressant de relever que chez l'homme, MMP1 (présenté comme l'analogue de MMP13 de la souris} joue un rôle primordial dans le photo-vieillissement, nous suggérons donc que PPARß/δ pourrait ainsi être une cible attrayante concernant la photoprotection.
Resumo:
Zebrafish is a good model for studying regeneration because of the rapidity with which it occurs. Better understanding of this process may lead in the future to improvement of the regenerating capacity of humans. Signaling factors are the second largest category of genes, regulated during regeneration after the regulators of wound healing. Major developmental signaling pathways play a role in this multistep process, such as Bmp, Fgf, Notch, retinoic acid, Shh, and Wnt. In the present study, we focus on TGF-β-induced genes, bigh3 and bambia. Bigh3 encodes keratoepithelin, a protein first identified as an extracellular matrix protein reported to play a role in cell adhesion, as well as in cornea formation and osteogenesis. The expression of bigh3 in zebrafish fins has previously been reported. Here we demonstrate that tgf-b1 and tgf-b3 mRNA reacted with delay, first showing no regulation at 3âeuro0/00dpa, followed by upregulation at 4 and 5âeuro0/00dpa. Tgf-b1, tgf-2, and tgf-brII mRNA were back to normal levels at 10âeuro0/00dpa. Only tgf-b3 mRNA was still upregulated at that time. Bigh3 mRNA followed the upregulation of tgf-b1, while bambia mRNA behaved similarly to tgf-b2 mRNA. We show that upregulation of bigh3 and bambia mRNA correlated with the process of fin regeneration and regulation of TGF-b signaling, suggesting a new role for these proteins.
Resumo:
Cervical lymph nodes biopsies from 31 HIV positive patients (with or without AIDS) were studied by histologic methods and immunohistochemistry (StreptABC staining of paraffin sections) to identify cellular and extracellular matrix components. The results were the following: (1) the biopsies were included in the stages of follicular hyperplasia without fragmentation FH-FF (4 cases); follicular hyperplasia with follicular fragmentation FH+FF (16 cases); follicular involution FI (6 cases) and diffuse pattern DP (5 cases); (2) the most important alteration was the germinal centers disruption due to follicle lysis, which began in the light zone; (3) there was coincidence between intrafollicular hemorrhages and segmental hyaline mycroangiopathy; (4) during the progression of the disease occurred: (a) an increase in the number of mast cells, CD68+ and Mac387+ macrophages; (b) a diffuse augment of collagen III, elastic fibers, laminin, fibronectin and proteoglycans; (c) maintenance of Factor VIII - related antigens in the vascular endothelial cells, with decrease in the expression of Ulex-Europeus I lectin. Follicular hyperplasia (FH-FF or FH+FF) was the most common histologic pattern recognized in the lymph nodes of patients without AIDS and follicular involution and difuse pattern were seen in those who had AIDS. The results indicate that the lymph node biopsies may provide important information about the evolutive stage of the disease and its prognosis.