986 resultados para ELECTRIC CONDUCTIVITY
Resumo:
The complex permittivity characteristics of epoxy nanocomposite systems were examined and an attempt has been made to understand the underlying physics governing some of the unique macroscopic dielectric behaviors. The experimental investigations were performed using two different nanocomposite systems with low filler concentrations over the frequency range of 10(-2)-400 Hz, but for some cases, the data has been reported upto 10(6) Hz for a better understanding of the behaviors. Results demonstrate that nanocomposites do possess unique permittivity behaviors as compared to those already known for unfilled polymer and microcomposite systems. The nanocomposite real permittivity and tan delta values are found to be lower than that of unfilled epoxy. In addition, results show that interfacial polarization and charge carrier mobilities are suppressed in epoxy nanocomposite systems. The complex permittivity spectra coupled with the ac conductivity characteristics with respect to frequency was found to be sufficient to identify several of the nanocomposite characteristics like the reduction in permittivity values, reduction in the interfacial polarization mechanisms and the electrical conduction behaviors. Analysis of the results are also performed using electric modulus formalisms and it has been seen that the nanocomposite dielectric behaviors at low frequencies can also be explained clearly using this formalism.
Resumo:
The protonic conductivity of ammonium ferrocyanide hydrate has been studied by the complex admittance method. The admittance plots show departures from ideal Debye behaviour. The values of ionic conductivity (sigma = 3.7 X 10(-5) (OMEGA-cm)-1) and diffusion coefficient (D = 3.8 X 10(-10) cm2/s) obtained at room temperature are consistent with the corresponding values estimated by an earlier NMR study.
Resumo:
The conductivity of highly doped polypyrrole is less than that of intermediately doped samples, by two orders of magnitude, at 4.2 K. This may be due to more number of bipolarons in highly doped samples. Bipolarons require four times more activation energy than single polarons to hop by thermally induced virtual transitions to intermediate dissociated polaron states than by the nondissociated process. The conduction process in these polyconjugated systems involve ionization from deep trapped states, having a View the MathML source dependence, hopping from localised states, having View the MathML source dependence, and intersite tunnel percolation, having T−1 dependence. The interplay of these factors leads to a better fit by View the MathML source. The mechanism for this exponential behaviour need not be same as that of Motts variable range hopping. Conduction by percolation is possible, if an infinite cluster of chains can be connected by impurity centers created by dopant ions. The tendency for the saturation of conductivity at very low temperatures is due to the possibility of intersite tunnel percolation is disordered polaronic systems.
Resumo:
Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.
Effect of High Pressure on the Electrical Conductivity of TlInX2 (X = Se, Te) Layered Semiconductors
Resumo:
The dc electrical conductivity of TlInX2 (X = Se, Te) single crystals, parallel and perpendicular to the (001) c-axis is studied under high quasi-hydrostatic pressure up to 7.0 GPa, at room temperature. Conductivity measurements parallel to the c-axis are carried out at high pressures and down to liquid nitrogen temperatures. These materials show continuous metallization under pressure. Both compounds have almost the same pressure coefficient of the electrical activation energy parallel to the c-axis, d(ΔE∥)/dP = −2.9 × 10−10 eV/Pa, which results from the narrowing of the band gap under pressure. The results are discussed in the light of the band structure of these compounds.
Resumo:
Electrolytes based on polyethylene glycol (PEG, mol.wt.8000) and LiCl of compositions, (PEG)(x)LiCl, x=4, 6, 8, 10, 12, 40, 60, where x is the O/Li ratio, were prepared by solution casting from methanol solutions. FTIR studies indicate that the ether oxygens of the polymer chain participate in Li+ ion conduction. The presence of a salt-polymer complex that melts around 190 degrees C was evidenced by DSC measurements for the electrolytes with compositions x<12. The highest conductivity was obtained at the composition x=10 which was attributed to the presence of a mostly amorphous compound. NMR measurements indicated two regions of motional narrowing, one attributable to the glass transition and another to translational diffusion.
Resumo:
In this paper, we report an enhancement in ionic conductivity in a new nano-composite solid polymer electrolyte namely, (PEG) (x) LiBr: y(SiO2). The samples were prepared, characterized, and investigated by XRD, IR, NMR, and impedance spectroscopy. Conductivity as a function of salt concentration shows a double peak. Five weight percent addition of silica nanoparticles increases the ionic conductivity by two orders of magnitude. Conductivity exhibits an Arrhenius type dependence on temperature. IR study has shown that the existence of nanoparticles in the vicinity of terminal OaEuro center dot H group results in a shift in IR absorption frequency and increase in amplitude of vibration of the terminal OaEuro center dot H group. This might lead to an enhancement in conductivity due to increased segmental motion of the polymer. Li-7 NMR spectroscopic studies also seem to support this. Thus addition of nanoparticle inert fillers still seems to be a promising technique to enhance the ionic conductivity in solid polymer electrolytes.
Resumo:
In this letter, a closed-form analytical model for temperature-dependent longitudinal diffusive lattice thermal conductivity (kappa) of a metallic single-walled carbon nanotube (SWCNT) has been addressed. Based on the Debye theory, the second-order three-phonon Umklapp, mass difference (MD), and boundary scatterings have been incorporated to formulate. in both low-and high-temperature regimes. It is proposed that. at low temperature (T) follows the T-3 law and is independent of the second-order three-phonon Umklapp and MD scatterings. The form factor due to MD scattering also plays a key role in the significant variation of. in addition to the SWCNT length. The present diameter-independent model of. agrees well with the available experimental data on suspended intrinsic metallic SWCNTs over a wide range of temperature and can be carried forward for electrothermal analyses of CNT-based interconnects.
Resumo:
The variation in the exponent s in σa.c. agr ωs as a function of temperature is reported for lithium thioborate glasses. The origin of the observed minimum in s is discussed using the diffusion-controlled relaxation (DCR) model. An entirely new model for the a.c. conductivity of highly modified ionic glasses has been proposed and expressions for relaxation identical with those of the DCR model have been obtained, providing a new explanation for the temperature behaviour of s. The origin of two activation barriers generally observed in a.c. conductivity studies is examined in the light of the new model.
Resumo:
The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the transparent glasses in the composition 0.5Cs(2)O-0.5Li(2)O-3B(2)O(3) (CLBO) were investigated in the 100 Hz - 10 MHz frequency range. The dielectric constant for the as-quenched glass increased with increasing temperature, exhibiting anomalies in the vicinity of the glass transition and crystallization temperatures. The temperature coefficient of dielectric constant was estimated (35 +/- 2 ppm. K-1) using Havinga's formula. The dielectric loss at 313 K is 0.005 +/- 0.0005 at all the frequencies understudy. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 1.73 +/- 0.05 eV, close to that of the activation energy obtained for DC conductivity (1.6 +/- 0.06 eV). The frequency dependent electrical conductivity was analyzed using Jonscher's power law. The combination of these dielectric characteristics suggests that these are good candidates for electrical energy storage device applications.
Resumo:
Scheelite type solid electrolytes, Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) have been synthesized using a solid state method. Their structure and ionic conductivity (a) were obtained by single crystal X-ray diffraction and ac-impedance spectroscopy, respectively. X-ray diffraction studies reveal a space group of I4(1)/a for Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) scheelite compounds. The unsubstituted Li0.5Ce0.5MoO4 showed lithium ion conductivity similar to 10(-5)-10(-3) Omega(-1)cm(-1) in the temperature range of 300-700 degrees C (sigma = 2.5 x 10(-3) Omega(-1) cm(-1) at 700 degrees C). The substituted compounds show lower conductivity compared to the unsubstituted compound, with the magnitude of ionic conductivity being two (in the high temperature regime) to one order (in the low temperature regime) lower than the unsubstituted compound. Since these scheelite type structures show significant conductivity, the series of compounds could serve in high temperature lithium battery operations.
Resumo:
Critical exponent of the electrical conductivity in the paracoherence region (gamma) of the high temperature superconductor YBa2Cu3O7-x (YBCO) has been estimated for high quality thin film on ZrO2 substrate prepared by high pressure oxygen sputtering. High energy ion irradiation was carried out using 100 MeV O-16(7+) ions at liquid nitrogen to see the effects of disorder on the value of the exponent. The critical exponent from a value of about 2 to 1.62 upon irradiation. Studies were also carried film to see the effect of ageing and annealing.
Resumo:
Transparent glasses in the system 0.5Li(2)O-0.5M(2)O-2B(2)O(3) (M = Li, Na and K) were fabricated via the conventional melt quenching technique. The amorphous and glassy nature of the samples was confirmed via the X-ray powder diffraction and the differential scanning calorimetry, respectively. The frequency and temperature dependent characteristics of the dielectric relaxation and the electrical conductivity were investigated in the 100 Hz-10 MHz frequency range. The imaginary part of the electric modulus spectra was modeled using an approximate solution of Kohrausch-Williams-Watts relation. The stretching exponent, (3, was found to be temperature independent for 0.5Li(2)O-0.5Na(2)O-2B(2)O(3) (LNBO) glasses. The activation energy associated with DC conduction was found to be higher (1.25 eV) for 0.5Li(2)O-0.5K(2)O-2B(2)O(3) (LKBO) glasses than that of the other glass systems under study. This is attributed to the mixed cation effect. (C) 2011 Elsevier By. All rights reserved.