876 resultados para Dynamic Data eXchange


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit information and do not generally consider uncertainties. We look forward to a future where operational dataassimilation schemes improve estimates by tracking land surface processes and exploiting multiple types of observations. Dataassimilation schemes seek to combine observations and models in a statistically optimal way taking into account uncertainty in both, but have not yet been much exploited in this area. The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a weak constraint variational dataassimilationsystem. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a linear dynamic model, and EarthObservationdata (top-of-canopy reflectance here). The observation operator is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the prototype by automatic differentiation of the computer codes. In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). Zero and first order process model constraints are implemented and explored as the dynamic model. The assimilation estimates all state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typical of those achieved by optical sensors supposed for the data. The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing observations with quite large data gaps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new algorithm for summarizing properties of large-scale time-evolving networks. This type of data, recording connections that come and go over time, is being generated in many modern applications, including telecommunications and on-line human social behavior. The algorithm computes a dynamic measure of how well pairs of nodes can communicate by taking account of routes through the network that respect the arrow of time. We take the conventional approach of downweighting for length (messages become corrupted as they are passed along) and add the novel feature of downweighting for age (messages go out of date). This allows us to generalize widely used Katz-style centrality measures that have proved popular in network science to the case of dynamic networks sampled at non-uniform points in time. We illustrate the new approach on synthetic and real data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data assimilation algorithms are a crucial part of operational systems in numerical weather prediction, hydrology and climate science, but are also important for dynamical reconstruction in medical applications and quality control for manufacturing processes. Usually, a variety of diverse measurement data are employed to determine the state of the atmosphere or to a wider system including land and oceans. Modern data assimilation systems use more and more remote sensing data, in particular radiances measured by satellites, radar data and integrated water vapor measurements via GPS/GNSS signals. The inversion of some of these measurements are ill-posed in the classical sense, i.e. the inverse of the operator H which maps the state onto the data is unbounded. In this case, the use of such data can lead to significant instabilities of data assimilation algorithms. The goal of this work is to provide a rigorous mathematical analysis of the instability of well-known data assimilation methods. Here, we will restrict our attention to particular linear systems, in which the instability can be explicitly analyzed. We investigate the three-dimensional variational assimilation and four-dimensional variational assimilation. A theory for the instability is developed using the classical theory of ill-posed problems in a Banach space framework. Further, we demonstrate by numerical examples that instabilities can and will occur, including an example from dynamic magnetic tomography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased fertiliser application associated with increased cereal production, increased population and increased livestock levels. The dynamic model INCA Integrated Nitrogen in Catchments. has been applied to simulate the day-to-day transport of N from the terrestrial ecosystem to the riverine environment. This process-based model generates spatial and temporal data and reproduces the observed instream concentrations. Applying the model to current land use and 1930s land use indicates that there has been a major shift in the short term dynamics since the 1930s, with increased river and groundwater concentrations caused by both non-point source pollution from agriculture and point source discharges. �

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in hardware and software in the past decade allow to capture, record and process fast data streams at a large scale. The research area of data stream mining has emerged as a consequence from these advances in order to cope with the real time analysis of potentially large and changing data streams. Examples of data streams include Google searches, credit card transactions, telemetric data and data of continuous chemical production processes. In some cases the data can be processed in batches by traditional data mining approaches. However, in some applications it is required to analyse the data in real time as soon as it is being captured. Such cases are for example if the data stream is infinite, fast changing, or simply too large in size to be stored. One of the most important data mining techniques on data streams is classification. This involves training the classifier on the data stream in real time and adapting it to concept drifts. Most data stream classifiers are based on decision trees. However, it is well known in the data mining community that there is no single optimal algorithm. An algorithm may work well on one or several datasets but badly on others. This paper introduces eRules, a new rule based adaptive classifier for data streams, based on an evolving set of Rules. eRules induces a set of rules that is constantly evaluated and adapted to changes in the data stream by adding new and removing old rules. It is different from the more popular decision tree based classifiers as it tends to leave data instances rather unclassified than forcing a classification that could be wrong. The ongoing development of eRules aims to improve its accuracy further through dynamic parameter setting which will also address the problem of changing feature domain values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tropical tropopause is considered to be the main region of upward transport of tropospheric air carrying water vapor and other tracers to the tropical stratosphere. The lower tropical stratosphere is also the region where the quasi-biennial oscillation (QBO) in the zonal wind is observed. The QBO is positioned in the region where the upward transport of tropospheric tracers to the overworld takes place. Hence the QBO can in principle modulate these transports by its secondary meridional circulation. This modulation is investigated in this study by an analysis of general circulation model (GCM) experiments with an assimilated QBO. The experiments show, first, that the temperature signal of the QBO modifies the specific humidity in the air transported upward and, second, that the secondary meridional circulation modulates the velocity of the upward transport. Thus during the eastward phase of the QBO the upward moving air is moister and the upward velocity is less than during the westward phase of the QBO. It was further found that the QBO period is too short to allow an equilibration of the moisture in the QBO region. This causes a QBO signal of the moisture which is considerably smaller than what could be obtained in the limiting case of indefinitely long QBO phases. This also allows a high sensitivity of the mean moisture over a QBO cycle to the El Niño-Southern Oscillation (ENSO) phenomena or major tropical volcanic eruptions. The interplay of sporadic volcanic eruptions, ENSO, and QBO can produce low-frequency variability in the water vapor content of the tropical stratosphere, which renders the isolation of the QBO signal in observational data of water vapor in the equatorial lower stratosphere difficult.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore the influence of the choice of attenuation factor on Katz centrality indices for evolving communication networks. For given snapshots of a network observed over a period of time, recently developed communicability indices aim to identify best broadcasters and listeners in the network. In this article, we looked into the sensitivity of communicability indices on the attenuation factor constraint, in relation to spectral radius (the largest eigenvalue) of the network at any point in time and its computation in the case of large networks. We proposed relaxed communicability measures where the spectral radius bound on attenuation factor is relaxed and the adjacency matrix is normalised in order to maintain the convergence of the measure. Using a vitality based measure of both standard and relaxed communicability indices we looked at the ways of establishing the most important individuals for broadcasting and receiving of messages related to community bridging roles. We illustrated our findings with two examples of real-life networks, MIT reality mining data set of daily communications between 106 individuals during one year and UK Twitter mentions network, direct messages on Twitter between 12.4k individuals during one week.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurovascular coupling in response to stimulation of the rat barrel cortex was investigated using concurrent multichannel electrophysiology and laser Doppler flowmetry. The data were used to build a linear dynamic model relating neural activity to blood flow. Local field potential time series were subject to current source density analysis, and the time series of a layer IV sink of the barrel cortex was used as the input to the model. The model output was the time series of the changes in regional cerebral blood flow (CBF). We show that this model can provide excellent fit of the CBF responses for stimulus durations of up to 16 s. The structure of the model consisted of two coupled components representing vascular dilation and constriction. The complex temporal characteristics of the CBF time series were reproduced by the relatively simple balance of these two components. We show that the impulse response obtained under the 16-s duration stimulation condition generalised to provide a good prediction to the data from the shorter duration stimulation conditions. Furthermore, by optimising three out of the total of nine model parameters, the variability in the data can be well accounted for over a wide range of stimulus conditions. By establishing linearity, classic system analysis methods can be used to generate and explore a range of equivalent model structures (e.g., feed-forward or feedback) to guide the experimental investigation of the control of vascular dilation and constriction following stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models for water transfer in the crop-soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop-soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop-soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

What are the microfoundations of dynamic capabilities that sustain competitive advantage in a highly volatile environment, such as a transition economy? We explore the detailed nature of these dynamic capabilities along with their antecedents by tracing the sequence of their development based on a longitudinal case study of an organization subject to an external context of radical transition — the Russian oil company, Yukos. Our rich qualitative data indicate two distinct types of dynamic capabilities that are pivotal for organizational transformation. Adaptation dynamic capabilities relate to routines of resource exploitation and deployment, which are supported by acquisition, internalization and dissemination of extant knowledge, as well as resource reconfiguration, divestment and integration. Innovation dynamic capabilities relate to the creation of completely new capabilities via exploration and path-creation processes, which are supported by search, experimentation and risk taking, as well as project selection, funding and implementation. Second, we find that sequencing the two types of dynamic capabilities, helped the organization both to secure short-term competitive advantage, and to create the basis for long-term competitive advantage. These dynamic capability constructs advance theoretical understanding of what dynamic capabilities are, whilst their sequencing explains how firms create, leverage and enhance them over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-open street roofs protect pedestrians from intense sunshine and rains. Their effects on natural ventilation of urban canopy layers (UCL) are less understood. This paper investigates two idealized urban models consisting of 4(2×2) or 16(4×4) buildings under a neutral atmospheric condition with parallel (0°) or non-parallel (15°,30°,45°) approaching wind. The aspect ratio (building height (H) / street width (W)) is 1 and building width is B=3H. Computational fluid dynamic (CFD) simulations were first validated by experimental data, confirming that standard k-ε model predicted airflow velocity better than RNG k-ε model, realizable k–ε model and Reynolds stress model. Three ventilation indices were numerically analyzed for ventilation assessment, including flow rates across street roofs and openings to show the mechanisms of air exchange, age of air to display how long external air reaches a place after entering UCL, and purging flow rate to quantify the net UCL ventilation capacity induced by mean flows and turbulence. Five semi-open roof types are studied: Walls being hung above street roofs (coverage ratio λa=100%) at z=1.5H, 1.2H, 1.1H ('Hung1.5H', 'Hung1.2H', 'Hung1.1H' types); Walls partly covering street roofs (λa=80%) at z=H ('Partly-covered' type); Walls fully covering street roofs (λa=100%) at z=H ('Fully-covered' type).They basically obtain worse UCL ventilation than open street roof type due to the decreased roof ventilation. 'Hung1.1H', 'Hung1.2H', 'Hung1.5H' types are better designs than 'Fully-covered' and 'Partly-covered' types. Greater urban size contains larger UCL volume and requires longer time to ventilate. The methodologies and ventilation indices are confirmed effective to quantify UCL ventilation.