948 resultados para Disulfide Bond Isomerization
Resumo:
Two new hydrogen bond induced liquid crystals with 4-butoxy benzoic acid as the proton donor and two chiral substituted stilbazole as the proton acceptor have been synthesized. Their liquid crystal transitions were studied by DSC and optical polarized microscope, the IR spectra of the complexes show the existence of the intermolecular hydrogen bond. The results of DSC and optical polarized microscope show that one of them (4BA-VSZ) has a chiral smectic C phase.
Resumo:
The electrooxidation of ascorbic acid (AA) at the bis(4-pyridyl)disulfide (PySSPy) modified gold electrode was studied. The results showed that the oxidation process was pH-dependent. It was mainly due to the static interaction between AA and the modified
Resumo:
The reactions of [Cp2Mo2(CO)4] (1) with 2,2'-dipyridyl disulphide (C5H4NS-)2, 8,8'-diquinolyl disulphide (C9H6NS-)2 and tetramethyl thiuram disulphide (Me2NC(S)S-)2 in toluene solution resulted in the cleavage of the Mo-Mo triple bond to yield molybdenum complexes [CpMo(CO)2(C5H4NS)] (2), [CpMo(CO)2(C9H6NS)] (3) and [CpMo(CO)2(S2CNMe2)] (4), respectively. The molecular structures of 2, 3 . O=PPh3 and 4 were determined by X-ray diffraction studies. Crystals of 2 are monoclinic, space group P2(1)/n, with Z = 4, in a unit cell of dimensions a = 6.448(1), b = 12.616(2), c = 14.772(2) angstrom, beta = 92.85(1)-degrees. The structure was refined to R = 0.028 and R(w) = 0.039 for 1357 observed reflections. Crystals of 3 . O=PPh3 are triclinic, space group P1BAR, with Z = 2, in a unit cell of dimensions a = 11.351(3), b = 13.409(3), c = 9.895(2) angstrom, alpha = 94.59(2), beta = 90.35(2), gamma = 78.07(2)-degrees. The structure was refined to R = 0.033 and R(w) = 0.037 for 3260 observed reflections. Crystals of 4 are monoclinic, space group P2(1)/a and Z = 4 with a = 12.468(5), b = 7.637(2), c = 13.135(4) angstrom, beta = 96.62(3). The structure was refined to R = 0.032 and R(w) = 0.042 for 1698 observed reflections. Each of complexes 2-4 contains a cyclopentadienyl ligand, a cis pair of carbonyls and a chelate ligand (S,N donor or S,S donor). All the compounds have distorted square-pyramid structures.
Resumo:
The frequencies of the stretching vibration and the bending vibration of the 0-H ... 0 bond in potassium dihydrogen phosphate have been calculated by means of two semiempirical formulae with three parameters. The calculated results can give satisfactory explanation for the experimental spectra of the potassium dihydrogen phosphate crystal. The parameters used in the calculations may be related to the chemical bonding and the charge distribution about the two oxygen atoms of the 0-H ... 0 bond system.
Resumo:
The electrochemical behaviour of hexacyanoferrate(II) has been studied by using a bis(4-pyridyl)disulfide modified gold electrode. On the protonated electrode surface, hexacyanoferrate(II) can transfer an electron reversibly but no apparent adsorption was detected. On the deprotonated electrode surface, electron transfer by hexacyanoferrate(II) was more difficult. The electrochemical reversibility varied with the pH of the solution. Relationships between the currents or the standard heterogeneous rate constants and pH were derived.
Resumo:
Anisotropic specimens of MoS2 are obtained by pressing the microcrystalline powder into special die. This inelastic compression results in a rearrangement of the disulfide micro platelets observed by Atomic Force Microscopy and reflected in the macroscopic anisotropy in electrical conductivity in these samples. The conductivity measured parallel and perpendicular to the direction of applied pressure exhibits an anisotropy factor of ∼10 at 1 GPa. This behaviour of the conductivity as a function of applied pressure is explained as the result of the simultaneous influence of a rearrangement of the micro platelets in the solid and the change of the inter-grain distances.
Resumo:
Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.
Resumo:
Geiparvarin is a natural product which contains both a 3(2H)-furanone and a coumarin moiety in its structure. The aim of this project was to investigate the use of Pd(0)-mediated C–C bondforming reactions to produce structurally modified geiparvarins. Chapter 1 consists of a review of the relevant literature, including that pertaining to the syntheses of selected naturally occurring 3(2H)-furanones. The known syntheses of geiparvarin and closely related analogues are examined, along with the documented biological activity of these compounds. The synthetic routes which allow access to 4-substituted-3(2H)-furanones are also described. Chapter 2 describes in detail the synthesis of a variety of novel structurally modified geiparvarins by two complementary routes, both approaches utilising Pd(0)-mediated crosscoupling reactions, and discusses the characterisation of these compounds. The preparation of 5-ethyl-3(2H)-furanones is described, as is their incorporation into geiparvarin and the corresponding 5″-alkylgeiparvarin analogues via formation and dehydration of intermediate alcohols. Halogenation of 5-ethyl-3(2H)-furanones and the corresponding geiparvarin derivatives is discussed, along with further reactions of the resulting halides. Preparation of 3″-arylgeiparvarins involving both Suzuki–Miyura and Stille reactions, using the appropriate intermediate iodides and bromides, is described. The application of Stille and Heck conditions to give 3″-ethenylgeiparvarin analogues and Sonogashira conditions to produce 3″-ethynylgeiparvarin analogues, using the relevant intermediate iodides, is also extensively outlined. Chapter 3 contains all of the experimental data and details of the synthetic methods employed for the compounds prepared during the course of this research. All novel compounds prepared were fully characterised using NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis; the details of which are included.