924 resultados para Distributed process model
Resumo:
This thesis, set within an Action Research framework, details the development and validation of a writer-centred model of the writing process. The model was synthesised within the boundaries of a writers’ group for MA students. The initial data collected, and analysed using the principles of grounded theory, were retrospective descriptions of group members’ writing processes. After initial analysis, additional data, from group members’ writing, and from audio recordings, were used for further analysis, and to form a model of the writing process. To ascertain whether the model had value outside the specific context in which it was made, it was validated from three different perspectives. Firstly, the retrospective descriptions of other writers were collected and analysed, using the model as a framework. Secondly, the model was presented at academic conferences; comments about the model, made by members of the audience, were collected and analysed. Finally, the model was used in writing courses for PhD students. Comments from these students, along with questionnaire responses, were collected and the content analysed. Upon examination of all data sources, the model was updated to reflect additional insights arising from the analysis. Analysis of the data also indicated that the model is useable outside its original context. Potential uses for the model are 1) raising awareness of the process of writing, 2) putting writers at ease, 3) serving as a starting point for individuals or groups to design their own models of the writing process, and 4) as a tool to help writers take control of their writing processes.
Resumo:
A nature inspired decentralised multi-agent algorithm is proposed to solve a problem of distributed task allocation in which cities produce and store batches of different mail types. Agents must collect and process the mail batches, without global knowledge of their environment or communication between agents. The problem is constrained so that agents are penalised for switching mail types. When an agent process a mail batch of different type to the previous one, it must undergo a change-over, with repeated change-overs rendering the agent inactive. The efficiency (average amount of mail retrieved), and the flexibility (ability of the agents to react to changes in the environment) are investigated both in static and dynamic environments and with respect to sudden changes. New rules for mail selection and specialisation are proposed and are shown to exhibit improved efficiency and flexibility compared to existing ones. We employ a evolutionary algorithm which allows the various rules to evolve and compete. Apart from obtaining optimised parameters for the various rules for any environment, we also observe extinction and speciation.
Resumo:
This research describes a computerized model of human classification which has been constructed to represent the process by which assessments are made for psychodynamic psychotherapy. The model assigns membership grades (MGs) to clients so that the most suitable ones have high values in the therapy category. Categories consist of a hierarchy of components, one of which, ego strength, is analysed in detail to demonstrate the way it has captured the psychotherapist's knowledge. The bottom of the hierarchy represents the measurable factors being assessed during an interview. A questionnaire was created to gather the identified information and was completed by the psychotherapist after each assessment. The results were fed into the computerized model, demonstrating a high correlation between the model MGs and the suitability ratings of the psychotherapist (r = .825 for 24 clients). The model has successfully identified the relevant data involved in assessment and simulated the decision-making process of the expert. Its cognitive validity enables decisions to be explained, which means that it has potential for therapist training and also for enhancing the referral process, with benefits in cost effectiveness as well as in the reduction of trauma to clients. An adapted version measuring client improvement would give quantitative evidence for the benefit of therapy, thereby supporting auditing and accountability. © 1997 The British Psychological Society.
Resumo:
This paper presents the process of load balancing in simulation system Triad.Net, the architecture of load balancing subsystem. The main features of static and dynamic load balancing are discussed and new approach, controlled dynamic load balancing, needed for regular mapping of simulation model on the network of computers is proposed. The paper considers linguistic constructions of Triad language for different load balancing algorithms description.
Resumo:
In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.
Resumo:
We present a complex neural network model of user behavior in distributed systems. The model reflects both dynamical and statistical features of user behavior and consists of three components: on-line and off-line models and change detection module. On-line model reflects dynamical features by predicting user actions on the basis of previous ones. Off-line model is based on the analysis of statistical parameters of user behavior. In both cases neural networks are used to reveal uncharacteristic activity of users. Change detection module is intended for trends analysis in user behavior. The efficiency of complex model is verified on real data of users of Space Research Institute of NASU-NSAU.
Resumo:
2000 Mathematics Subject Classification: Primary: 62M10, 62J02, 62F12, 62M05, 62P05, 62P10; secondary: 60G46, 60F15.
Resumo:
2000 Mathematics Subject Classification: 60G52, 90B30.
Resumo:
2000 Mathematics Subject Classification: 60K10, 62P05
Resumo:
2010 Mathematics Subject Classification: 60E05, 62P05.
Resumo:
In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.
Resumo:
The cell:cell bond between an immune cell and an antigen presenting cell is a necessary event in the activation of the adaptive immune response. At the juncture between the cells, cell surface molecules on the opposing cells form non-covalent bonds and a distinct patterning is observed that is termed the immunological synapse. An important binding molecule in the synapse is the T-cell receptor (TCR), that is responsible for antigen recognition through its binding with a major-histocompatibility complex with bound peptide (pMHC). This bond leads to intracellular signalling events that culminate in the activation of the T-cell, and ultimately leads to the expression of the immune eector function. The temporal analysis of the TCR bonds during the formation of the immunological synapse presents a problem to biologists, due to the spatio-temporal scales (nanometers and picoseconds) that compare with experimental uncertainty limits. In this study, a linear stochastic model, derived from a nonlinear model of the synapse, is used to analyse the temporal dynamics of the bond attachments for the TCR. Mathematical analysis and numerical methods are employed to analyse the qualitative dynamics of the nonequilibrium membrane dynamics, with the specic aim of calculating the average persistence time for the TCR:pMHC bond. A single-threshold method, that has been previously used to successfully calculate the TCR:pMHC contact path sizes in the synapse, is applied to produce results for the average contact times of the TCR:pMHC bonds. This method is extended through the development of a two-threshold method, that produces results suggesting the average time persistence for the TCR:pMHC bond is in the order of 2-4 seconds, values that agree with experimental evidence for TCR signalling. The study reveals two distinct scaling regimes in the time persistent survival probability density prole of these bonds, one dominated by thermal uctuations and the other associated with the TCR signalling. Analysis of the thermal fluctuation regime reveals a minimal contribution to the average time persistence calculation, that has an important biological implication when comparing the probabilistic models to experimental evidence. In cases where only a few statistics can be gathered from experimental conditions, the results are unlikely to match the probabilistic predictions. The results also identify a rescaling relationship between the thermal noise and the bond length, suggesting a recalibration of the experimental conditions, to adhere to this scaling relationship, will enable biologists to identify the start of the signalling regime for previously unobserved receptor:ligand bonds. Also, the regime associated with TCR signalling exhibits a universal decay rate for the persistence probability, that is independent of the bond length.
Resumo:
In machine learning, Gaussian process latent variable model (GP-LVM) has been extensively applied in the field of unsupervised dimensionality reduction. When some supervised information, e.g., pairwise constraints or labels of the data, is available, the traditional GP-LVM cannot directly utilize such supervised information to improve the performance of dimensionality reduction. In this case, it is necessary to modify the traditional GP-LVM to make it capable of handing the supervised or semi-supervised learning tasks. For this purpose, we propose a new semi-supervised GP-LVM framework under the pairwise constraints. Through transferring the pairwise constraints in the observed space to the latent space, the constrained priori information on the latent variables can be obtained. Under this constrained priori, the latent variables are optimized by the maximum a posteriori (MAP) algorithm. The effectiveness of the proposed algorithm is demonstrated with experiments on a variety of data sets. © 2010 Elsevier B.V.
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.