959 resultados para Distributed Material Flow Control
Resumo:
The importance of the rate of change of the pollution stock in determining the damage to the environment has been an issue of increasing concern in the literature. This paper uses a three-sector (economy, population and environment), non-linear, discrete time, calibrated model to examine pollution control. The model explicitly links economic growth to the health of the environment. The stock of natural resources is affected by the rate of pollution flows, through their impact on the regenerative capacity of the natural resource stock. This can shed useful insights into pollution control strategies, particularly in developing countries where environmental resources are crucial for production in many sectors of the economy. Simulation exercises suggested that, under plausible assumptions, it is possible to reverse undesirable transient dynamics through pollution control expenditure, but this is dependent upon the strategies used for control. The best strategy is to spend money fostering the development of production technologies that reduce pollution rather than spending money dealing with the effects of the pollution flow into the environment. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Many granulation plants operate well below design capacity, suffering from high recycle rates and even periodic instabilities. This behaviour cannot be fully predicted using the present models. The main objective of the paper is to provide an overview of the current status of model development for granulation processes and suggest future directions for research and development. The end-use of the models is focused on the optimal design and control of granulation plants using the improved predictions of process dynamics. The development of novel models involving mechanistically based structural switching methods is proposed in the paper. A number of guidelines are proposed for the selection of control relevant model structures. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The integrated control of nitrate recirculation and external carbon addition in a predenitrification biological wastewater treatment system is studied. The proposed control structure consists of four feedback control loops, which manipulate the nitrate recirculation and the carbon dosage flows in a highly coordinated manner such that the consumption of external carbon is minimised while the nitrate discharge limits (based on both grab and composite samples) are met. The control system requires the measurement of the nitrate concentrations at the end of both the anoxic and the aerobic zones. Distinct from ordinary control systems, which typically minimise the variation in the controlled variables, the proposed control system essentially maximises the diurnal variation of the effluent nitrate concentration and through this maximises the use of influent COD for denitrification, thus minimising the requirement for external carbon source. Simulation studies using a commonly accepted simulation benchmark show that the controlled system consistently achieves the designated effluent quality with minimum costs.
Resumo:
Recent advances in molecular biology have made it possible to use the trace amounts of DNA in faeces to non-invasively sample endangered species for genetic studies. Here we use faeces as a source of DNA and mtDNA sequence data to elucidate the relationship among Spanish and Moroccan populations of great bustards. 834 bp of combined control region and cytochrome-b mtDNA fragments revealed four variable sites that defined seven closely related haplotypes in 54 individuals. Morocco was fixed for a single mtDNA haplotype that occurs at moderate frequency (28%) in Spain. We could not differentiate among the sampled Spanish populations of Caceres and Andalucia but these combined populations were differentiated from the Moroccan population. Estimates of gene flow (Nm = 0.82) are consistent with extensive observations on the southern Iberian peninsular indicating that few individuals fly across the Strait of Gibraltar. We demonstrate that both this sea barrier and mountain barriers in Spain limit dispersal among adjacent great bustard populations to a similar extent. The Moroccan population is of high ornithological significance as it holds the only population of great bustards in Africa. This population is critically small and genetic and observational data indicate that it is unlikely to be recolonised via immigration from Spain should it be extirpated. In light of the evidence presented here it deserves the maximum level of protection.
Resumo:
Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.
Resumo:
Os organoestânicos, principalmente o tributilestanho (TBT), são contaminantes ambientais, utilizados principalmente em tintas anti-incrustantes para navios. Eles sofrem bioacumulação e podem ser encontrados em mamíferos, inclusive em seres humanos. A principal fonte de exposição é a ingestão de alimentos contaminados. Esse estudo possuiu como objetivo a determinação de estanho em tecidos de ratas expostas cronicamente a TBT utilizando espectrometria de massas com plasma acoplado indutivamente (ICP-MS). Ratas Wistar adultas foram usadas na experimentação, sendo divididas dois grupos: o grupo exposto a 100 ng kg-1 dia-1 de TBT por 15 dias e o grupo de referência que recebeu somente o veículo durante o mesmo período de exposição. Ao final da exposição, os animais foram sacrificados e coletados plasma, coração, rim, pulmão, fígado e ovário para análise. As amostras foram secas em estufa por 72 horas e pulverizadas. A determinação de estanho foi realizada por ICP-MS após a digestão ácida assistida por micro-ondas de uma amostra com aproximadamente 100 mg. O limite de detecção (LD) calculado foi 4,3 ng L-1, o que permite a determinação de estanho em amostras de tecidos de animais usados para experimentação. A exatidão foi verificada pela análise do material de referência certificado de urina, Seronorm Urine (54,6 ± 2,7 μg L-1), tendo como resultado 50,1 ± 3,8 μg L-1. A concentração de estanho foi determinada em amostras de plasma, coração, rim, pulmão, fígado e ovário do grupo exposto a TBT e do grupo controle. Houve diferença estatisticamente significativa entre os dois grupos para todas as amostras analisadas. As diferenças entre os grupos foram mais pronunciadas nas amostras de fígado e rim. Além disso, este estudo mostrou que a presença de estanho no organismo de ratas distribui-se pelos tecidos acarretando em alterações morfofisiológicas já descritas em ovários, coração e fígado
Resumo:
O presente trabalho pretende contribuir para a melhoria da eficiência dos sistemas de transporte e distribuição de água, possível de conseguir através da recuperação de energia potencial que, em certas situações, existe em excesso em condutas gravíticas. Sendo uma questão já abordada em diversos estudos, as poupanças de energia a que poderá conduzir, justificam a análise de todas as oportunidades, em especial no nosso País, cuja dependência energética do exterior é bem conhecida. Todavia, a implementação de soluções que recorrem à instalação de turbinas em condutas de abastecimento de água, causam naturalmente alguma apreensão às respectivas entidades gestoras, uma vez que pode pôr em causa a integridade das condutas e, em consequência, o abastecimento de água. Neste contexto, o estudo de modelos de controlo específicos para os referidos equipamentos poderá ser um contributo para a implementação mais alargada das soluções de melhoria da eficiência de sistemas de abastecimento de água, através da instalação de geradores hidroeléctricos, que terão a dupla função de controlo de caudal e produção de energia. O estudo e simulação dos modelos de controlo contidos neste trabalho permite concluir que é possível garantir a segurança das condutas e produzir energia eléctrica com turbinas nelas instaladas. Interessa assim aprofundar este tipo de estudos de forma a conseguir modelos de controlo que, com as premissas indicadas, possibilitem a optimização da produção de energia.
Resumo:
Nowadays, the cooperative intelligent transport systems are part of a largest system. Transportations are modal operations integrated in logistics and, logistics is the main process of the supply chain management. The supply chain strategic management as a simultaneous local and global value chain is a collaborative/cooperative organization of stakeholders, many times in co-opetition, to perform a service to the customers respecting the time, place, price and quality levels. The transportation, like other logistics operations must add value, which is achieved in this case through compression lead times and order fulfillments. The complex supplier's network and the distribution channels must be efficient and the integral visibility (monitoring and tracing) of supply chain is a significant source of competitive advantage. Nowadays, the competition is not discussed between companies but among supply chains. This paper aims to evidence the current and emerging manufacturing and logistics system challenges as a new field of opportunities for the automation and control systems research community. Furthermore, the paper forecasts the use of radio frequency identification (RFID) technologies integrated into an information and communication technologies (ICT) framework based on distributed artificial intelligence (DAI) supported by a multi-agent system (MAS), as the most value advantage of supply chain management (SCM) in a cooperative intelligent logistics systems. Logistical platforms (production or distribution) as nodes of added value of supplying and distribution networks are proposed as critical points of the visibility of the inventory, where these technological needs are more evident.
Resumo:
Knowledge on forced magma injection and magma flow in dykes is crucial for the understanding of how magmas migrate through the crust to the Earth's surface. Because many questions still persist, we used the long, thick, and deep-seated Foum Zguid dyke (Morocco) to investigate dyke emplacement and internal flow by means of magnetic methods, structural analysis, petrography, and scanning electron microscopy. We also investigated how the host rocks accommodated the intrusion. Regarding internal flow: 1. Important variations of the rock magnetic properties and magnetic fabric occur with distance from dyke wall; 2. anisotropy of anhysteretic remanent magnetization reveals that anisotropy of magnetic susceptibility (AMS) results mainly from the superposition of subfabrics with distinct coercivities and that the imbrication between magnetic foliation and dyke plane is more reliable to deduce flow than the orientation of the AMS maximum principal axis; and 3. a dominant upward flow near the margins can be inferred. The magnetic fabric closest to the dyke wall likely records magma flow best due to fast cooling, whereas in the core the magnetic properties have been affected by high-temperature exsolution and metasomatic effects due to slow cooling. Regarding dyke emplacement, this study shows that the thick forceful intrusion induced deformation by homogeneous flattening and/or folding of the host sedimentary strata. Dewatering related to heat, as recorded by thick quartz veins bordering the dyke in some localities, may have also helped accommodating dyke intrusion. The spatial arrangement of quartz veins and their geometrical relationship with the dyke indicate a preintrusive to synintrusive sinistral component of strike slip.
Resumo:
Voltage source multilevel power converter structures are being considered for high power high voltage applications where they have well known advantages. Recently, full back-to-back connected multilevel neutral diode clamped converters (NPC) have been used in high voltage direct current (HVDC) transmission systems. Bipolar back-to-back connection of NPCs have advantages in long distance HVDC transmission systems, but highly increased difficulties to balance the dc capacitor voltage dividers on both sending and receiving end NPCs. This paper proposes a fast optimum-predictive controller to balance the dc capacitor voltages and to control the power flow in a long distance HVDCsystem using bipolar back-to-back connected NPCs. For both converter sides, the control strategy considers active and reactive power to establish ac grid currents on sending and receiving ends, while guaranteeing the balancing of both NPC dc bus capacitor voltages. Furthermore, the fast predictivecontroller minimizes the semiconductor switching frequency to reduce global switching losses. The performance and robustness of the new fast predictive control strategy and the associated dc capacitors voltage balancing are evaluated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.
Resumo:
Cyber-Physical Systems and Ambient Intelligence are two of the most important and emerging paradigms of our days. The introduction of renewable sources gave origin to a completely different dimension of the distribution generation problem. On the other hand, Electricity Markets introduced a different dimension in the complexity, the economic dimension. Our goal is to study how to proceed with the Intelligent Training of Operators in Power Systems Control Centres, considering the new reality of Renewable Sources, Distributed Generation, and Electricity Markets, under the emerging paradigms of Cyber-Physical Systems and Ambient Intelligence. We propose Intelligent Tutoring Systems as the approach to deal with the intelligent training of operators in these new circumstances.
Resumo:
This article describes a new approach in the Intelligent Training of Operators in Power Systems Control Centres, considering the new reality of Renewable Sources, Distributed Generation, and Electricity Markets, under the emerging paradigms of Cyber-Physical Systems and Ambient Intelligence. We propose Intelligent Tutoring Systems as the approach to deal with the intelligent training of operators in these new circumstances.
Resumo:
A supervisory control and data acquisition (SCADA) system is an integrated platform that incorporates several components and it has been applied in the field of power systems and several engineering applications to monitor, operate and control a lot of processes. In the future electrical networks, SCADA systems are essential for an intelligent management of resources like distributed generation and demand response, implemented in the smart grid context. This paper presents a SCADA system for a typical residential house. The application is implemented on MOVICON™11 software. The main objective is to manage the residential consumption, reducing or curtailing loads to keep the power consumption in or below a specified setpoint, imposed by the costumer and the generation availability.