983 resultados para Discrete models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the notions of equilibrium distribution and time of convergence in discrete non-autonomous graphs. Under some conditions we give an estimate to the convergence time to the equilibrium distribution using the second largest eigenvalue of some matrices associated with the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study some properties of the monotone solutions of the boundary value problem (p(u'))' - cu' + f(u) = 0, u(-infinity) = 0, u(+infinity) = 1, where f is a continuous function, positive in (0, 1) and taking the value zero at 0 and 1, and P may be an increasing homeomorphism of (0, 1) or (0, +infinity) onto [0, +infinity). This problem arises when we look for travelling waves for the reaction diffusion equation partial derivative u/partial derivative t = partial derivative/partial derivative x [p(partial derivative u/partial derivative x)] + f(u) with the parameter c representing the wave speed. A possible model for the nonlinear diffusion is the relativistic curvature operator p(nu)= nu/root 1-nu(2). The same ideas apply when P is given by the one- dimensional p- Laplacian P(v) = |v|(p-2)v. In this case, an advection term is also considered. We show that, as for the classical Fisher- Kolmogorov- Petrovski- Piskounov equations, there is an interval of admissible speeds c and we give characterisations of the critical speed c. We also present some examples of exact solutions. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new data set of daily gridded observations of precipitation, computed from over 400 stations in Portugal, is used to assess the performance of 12 regional climate models at 25 km resolution, from the ENSEMBLES set, all forced by ERA-40 boundary conditions, for the 1961-2000 period. Standard point error statistics, calculated from grid point and basin aggregated data, and precipitation related climate indices are used to analyze the performance of the different models in representing the main spatial and temporal features of the regional climate, and its extreme events. As a whole, the ENSEMBLES models are found to achieve a good representation of those features, with good spatial correlations with observations. There is a small but relevant negative bias in precipitation, especially in the driest months, leading to systematic errors in related climate indices. The underprediction of precipitation occurs in most percentiles, although this deficiency is partially corrected at the basin level. Interestingly, some of the conclusions concerning the performance of the models are different of what has been found for the contiguous territory of Spain; in particular, ENSEMBLES models appear too dry over Portugal and too wet over Spain. Finally, models behave quite differently in the simulation of some important aspects of local climate, from the mean climatology to high precipitation regimes in localized mountain ranges and in the subsequent drier regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focus on the probabilistic modelling of mechanical properties of prestressing strands based on data collected from tensile tests carried out in Laboratório Nacional de Engenharia Civil (LNEC), Portugal, for certification purposes, and covers a period of about 9 years of production. The strands studied were produced by six manufacturers from four countries, namely Portugal, Spain, Italy and Thailand. Variability of the most important mechanical properties is examined and the results are compared with the recommendations of the Probabilistic Model Code, as well as the Eurocodes and earlier studies. The obtained results show a very low variability which, of course, benefits structural safety. Based on those results, probabilistic models for the most important mechanical properties of prestressing strands are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is proposed to control delayed transitions towards extinction in single population theoretical models with discrete time undergoing saddle-node bifurcations. The control method takes advantage of the delaying properties of the saddle remnant arising after the bifurcation, and allows to sustain populations indefinitely. Our method, which is shown to work for deterministic and stochastic systems, could generally be applied to avoid transitions tied to one-dimensional maps after saddle-node bifurcations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the stair nested designs with u factors we have u steps and a(1), ... , a(u) "active" levels. We would have a(1) observations with different levels for the first factor each of them nesting a single level of each of the remaining factors; next a(2) observations with level a(1) + 1 for the first factor and distinct levels for the second factor each nesting a fixed level of each of the remaining factors, and so on. So the number of level combinations is Sigma(u)(i=1) a(i). In meta-analysis joint treatment of different experiments is considered. Joining the corresponding models may be useful to carry out that analysis. In this work we want joining L models with stair nesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LHC has reported tantalizing hints for a Higgs boson of mass 125 GeV decaying into two photons. We focus on two-Higgs-doublet Models, and study the interesting possibility that the heavier scalar H has been seen, with the lightest scalar h having thus far escaped detection. Nonobservation of h at LEP severely constrains the parameter-space of two-Higgs-doublet models. We analyze cases where the decay H -> hh is kinematically allowed, and cases where it is not, in the context of type I, type II, lepton-specific, and flipped models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear Dynamics, Vol. 29

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEE Proceedings - Vision, Image, and Signal Processing, Vol. 147, nº 1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many data have been useful to describe the growth of marine mammals, invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-pertz and von Bertalanffy's growth models. A generalized family of von Bertalanffy's maps, which is proportional to the right hand side of von Bertalanffy's growth equation, is studied and its dynamical approach is proposed. The system complexity is measured using Lyapunov exponents, which depend on two biological parameters: von Bertalanffy's growth rate constant and the asymptotic weight. Applications of synchronization in real world is of current interest. The behavior of birds ocks, schools of fish and other animals is an important phenomenon characterized by synchronized motion of individuals. In this work, we consider networks having in each node a von Bertalanffy's model and we study the synchronization interval of these networks, as a function of those two biological parameters. Numerical simulation are also presented to support our approaches.