985 resultados para Direct sequencing
Resumo:
Direct numerical simulation (DNS) is used to study flow characteristics after interaction of a planar shock with a spherical media interface in each side of which the density is different. This interfacial instability is known as the Richtmyer-Meshkov (R-M) instability. The compressible Navier-Stoke equations are discretized with group velocity control (GVC) modified fourth order accurate compact difference scheme. Three-dimensional numerical simulations are performed for R-M instability installed passing a shock through a spherical interface. Based on numerical results the characteristics of 3D R-M instability are analysed. The evaluation for distortion of the interface, the deformation of the incident shock wave and effects of refraction, reflection and diffraction are presented. The effects of the interfacial instability on produced vorticity and mixing is discussed.
Resumo:
We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.
Resumo:
We present a direct and dynamical method to distinguish low-dimensional deterministic chaos from noise. We define a series of time-dependent curves which are closely related to the largest Lyapunov exponent. For a chaotic time series, there exists an envelope to the time-dependent curves, while for a white noise or a noise with the same power spectrum as that of a chaotic time series, the envelope cannot be defined. When a noise is added to a chaotic time series, the envelope is eventually destroyed with the increasing of the amplitude of the noise.
Resumo:
A high-order accurate finite-difference scheme, the upwind compact method, is proposed. The 2-D unsteady incompressible Navier-Stokes equations are solved in primitive variables. The nonlinear convection terms in the governing equations are approximated by using upwind biased compact difference, and other spatial derivative terms are discretized by using the fourth-order compact difference. The upwind compact method is used to solve the driven flow in a square cavity. Solutions are obtained for Reynolds numbers as high as 10000. When Re less than or equal to 5000, the results agree well with those in literature. When Re = 7500 and Re = 10000, there is no convergence to a steady laminar solution, and the flow becomes unsteady and periodic.