842 resultados para Dirac brackets
Resumo:
The problem of confinement of neutral fermions in two-dimensional space-time is approached with a pseudoscalar double-step potential in the Dirac equation. Bound-state solutions are obtained when the coupling is of sufficient intensity. The confinement is made plausible by arguments based on effective mass and anomalous magnetic interaction. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a convenient mixing of vector and scalar potentials in a two-dimensional space-time is mapped into a Sturm-Liouville problem. For a specific case which gives rise to an exactly solvable effective modified Poschl-Teller potential in the Sturm-Liouville problem, bound-state solutions are found. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail and some unusual results are revealed. The Dirac delta potential as a limit of the modified Poschl-Teller potential is also discussed. The problem is also shown to be mapped into that of massless fermions subject to classical topological scalar and pseudoscalar potentials. Copyright (C) EPLA, 2007.
Resumo:
The problem of scattering of neutral fermions in two-dimensional spacetime is approached with a pseudoscalar potential step in the Dirac equation. Some unexpected aspects of the solutions beyond the absence of Klein's paradox are presented. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength. Added plausibility for the existence of bound-state solutions in a pseudoscalar double-step potential found in a recent Letter is given. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Dirac equation is solved for a pseudoscalar Coulomb potential in a two-dimensional world. An infinite sequence of bounded solutions are obtained. These results are in sharp contrast with those ones obtained in 3 + 1 dimensions where no bound-state solutions are found. Next the general two-dimensional problem for pseudoscalar power-law potentials is addressed consenting us to conclude that a nonsingular potential leads to bounded solutions. The behaviour of the upper and lower components of the Dirac spinor for a confining linear potential nonconserving- as well as conserving-parity, even if the potential is unbounded from below, is discussed in some detail. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The problem of neutral fermions subject to an inversely linear potential is revisited. It is shown that an infinite set of bound-state solutions can be found on the condition that the fermion is embedded in an additional uniform background potential. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength.
Resumo:
The Dirac equation is analyzed for nonconserving-parity pseudoscalar radial potentials in 3+1 dimensions. It is shown that despite the nonconservation of parity this general problem can be reduced to a Sturm-Liouville problem of nonrelativistic fermions in spherically symmetric effective potentials. The searching for bounded solutions is done for the power-law and Yukawa potentials. The use of the methodology of effective potentials allow us to conclude that the existence of bound-state solutions depends whether the potential leads to a definite effective potential-well structure or to an effective potential less singular than -1/4r(2).
Resumo:
The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Orthogonality criterion is used to show in a very simple and general way that anomalous bound-state solutions for the Coulomb potential (hydrino states) do not exist as bona fide solutions of the Schrodinger, Klein-Gordon and Dirac equations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We solve the generalized relativistic harmonic oscillator in 1+1 dimensions, i.e., including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs. We consider positive and negative quadratic potentials and discuss in detail their bound-state solutions for fermions and antifermions. The main features of these bound states are the same as the ones of the generalized three-dimensional relativistic harmonic oscillator bound states. The solutions found for zero pseudoscalar potential are related to the spin and pseudospin symmetry of the Dirac equation in 3+1 dimensions. We show how the charge conjugation and gamma(5) chiral transformations relate the several spectra obtained and find that for massless particles the spin and pseudospin symmetry-related problems have the same spectrum but different spinor solutions. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with scalar, vector, and isoscalar tensor interactions and discuss the conditions in which one may have both nucleon and antinucleon bound states.
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V-v = V-s + constant. These isospectral problems are solved in the case of squared trigonometric potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfunctions are discussed in some detail. It is revealed that a spin-0 particle is better localized than a spin-1/2 particle when they have the same mass and are subjected to the same potentials.
Resumo:
The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V(v) + V(s) = constant. These intrinsically relativistic and isospectral problems are solved in the case of squared hyperbolic potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfuntions are discussed in some detail and the effective Compton wavelength is revealed to be an important physical quantity. It is revealed that a boson is better localized than a fermion when they have the same mass and are subjected to the same potentials.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: To investigate the degree of debris, roughness, and friction of stainless steel orthodontic archwires before and after clinical use.Materials and Methods: For eight individuals, two sets of three brackets (n = 16) each were bonded from the first molar to the first premolar. A passive segment of 0.019- x 0.025-inch stainless steel archwire was inserted into the brackets and tied by elastomeric ligature. Debris level (via scanning electron microscopy), roughness, and frictional force were evaluated as-received and after 8 weeks of intraoral exposure. Mann-Whitney, Wilcoxon signed-rank, and Spearman correlation tests were used for statistical analysis at the .05 level of significance.Results: There were significant increases in the level of debris (P = .0004), roughness of orthodontic wires (P = .002), and friction (P = .0001) after intraoral exposure. Significant positive correlations (P < .05) were observed between these three variables.Conclusion: Stainless steel rectangular wires, when exposed to the intraoral environment for 8 weeks, showed a significant increase in the degree of debris and surface roughness, causing an increase in friction between the wire and bracket during the mechanics of sliding. (Angle Orthod. 2010;80:521-527.)