996 resultados para Diodes organiques électroluminescentes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the direct synthesis of strong, highly conducting, and transparent single-walled carbon nanotube (SWNT) films. Systematically, tests reveal that the directly synthesized films have superior electrical and mechanical properties compared with the films made from a solution-based filtration process: the electrical conductivity is over 2000 S/cm and the strength can reach 360 MPa. These values are both enhanced by more than 1 order. We attribute these intriguing properties to the good and long interbundle connections. Moreover, by the help of an extrapolated Weibull theory, we verify the feasibility of reducing the interbundle slip by utilizing the long-range intertube friction and estimate the ultimate strength of macroscale SWNTs without binding agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three subjects related to epitaxial GaAs-GaAlAs optoelectronic devices are discussed in this thesis. They are:

1. Embedded Epitaxy

This is a technique of selective multilayer growth of GaAs- Ga1-xAlxAs single crystal structures through stripe openings in masking layers on GaAs substrates. This technique results in prismatic layers of GaAs and Ga1-xAlxAs "embedded" in each other and leads to controllable uniform structures terminated by crystal faces. The dependence of the growth habit on the orientation of the stripe openings has been studied. Room temperature embedded double heterostructure lasers have been fabricated using this technique. Threshold current densities as low as 1.5 KA/cm2 have been achieved.

2. Barrier Controlled PNPN Laser Diode

It is found that the I-V characteristics of a PNPN device can be controlled by using potential barriers in the base regions. Based on this principle, GaAs-GaAlAs heterostructure PNPN laser diodes have been fabricated. GaAlAs potential barriers in the bases control not only the electrical but also the optical properties of the device. PNPN lasers with low threshold currents and high breakover voltage have been achieved. Numerical calculations of this barrier controlled structure are presented in the ranges where the total current is below the holding point and near the lasing threshold.

3. Injection Lasers on Semi-Insulating Substrates

GaAs-GaAlAs heterostructure lasers fabricated on semi-insulating substrates have been studied. Two different laser structures achieved are: (1) Crowding effect lasers, (2) Lateral injection lasers. Experimental results and the working principles underlying the operation of these lasers are presented. The gain induced guiding mechanism is used to explain the lasers' far field radiation patterns. It is found that Zn diffusion in Ga1-xAlxAs depends on the Al content x, and that GaAs can be used as the diffusion mask for Zn diffusion in Ga1-xAlxAs. Lasers having very low threshold currents and operating in a stable single mode have been achieved. Because these lasers are fabricated on semi-insulating substrates, it is possible to integrate them with other electronic devices on the same substrate. An integrated device, which consists of a crowding effect laser and a Gunn oscillator on a common semi-insulating GaAs substrate, has been achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Films of Ti-Si-N obtained by reactively sputtering a TiSi_2, a Ti_5Si_3, or a Ti_3Si target are either amorphous or nanocrystalline in structure. The atomic density of some films exceeds 10^23 at./cm^3. The room-temperature resistivity of the films increases with the Si and the N content. A thermal treatment in vacuum at 700 °C for 1 hour decreases the resistivity of the Ti-rich films deposited from the Ti_5Si_3 or the Ti_3Si target, but increases that of the Si-rich films deposited from the TiSi_2 target when the nitrogen content exceeds about 30 at. %.

Ti_(34)Si_(23)N_(43) deposited from the Ti_5Si_3 target is an excellent diffusion barrier between Si and Cu. This film is a mixture of nanocrystalline TiN and amorphous SiN_x. Resistivity measurement from 80 K to 1073 K reveals that this film is electrically semiconductor-like as-deposited, and that it becomes metal-like after an hour annealing at 1000 °C in vacuum. A film of about 100 nm thick, with a resistivity of 660 µΩcm, maintains the stability of Si n+p shallow junction diodes with a 400 nm Cu overlayer up to 850 °C upon 30 min vacuum annealing. When used between Si and Al, the maximum temperature of stability is 550 °C for 30 min. This film can be etched in a CF_4/O_2 plasma.

The amorphous ternary metallic alloy Zr_(60)Al_(15)Ni_(25) was oxidized in dry oxygen in the temperature range 310 °C to 410 °C. Rutherford backscattering and cross-sectional transmission electron microscopy studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel is depleted from the oxide and enriched in the amorphous alloy below the oxide/alloy interface. The oxide layer thickness grows parabolically with the annealing duration, with a transport constant of 2.8x10^(-5) m^2/s x exp(-1.7 eV/kT). The oxidation rate is most likely controlled by the Ni diffusion in the amorphous alloy.

At later stages of the oxidation process, precipitates of nanocrystalline ZrO_2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery in 1962 of laser action in semiconductor diodes made from GaAs, the study of spontaneous and stimulated light emission from semiconductors has become an exciting new field of semiconductor physics and quantum electronics combined. Included in the limited number of direct-gap semiconductor materials suitable for laser action are the members of the lead salt family, i.e . PbS, PbSe and PbTe. The material used for the experiments described herein is PbTe . The semiconductor PbTe is a narrow band- gap material (Eg = 0.19 electron volt at a temperature of 4.2°K). Therefore, the radiative recombination of electron-hole pairs between the conduction and valence bands produces photons whose wavelength is in the infrared (λ ≈ 6.5 microns in air).

The p-n junction diode is a convenient device in which the spontaneous and stimulated emission of light can be achieved via current flow in the forward-bias direction. Consequently, the experimental devices consist of a group of PbTe p-n junction diodes made from p –type single crystal bulk material. The p - n junctions were formed by an n-type vapor- phase diffusion perpendicular to the (100) plane, with a junction depth of approximately 75 microns. Opposite ends of the diode structure were cleaved to give parallel reflectors, thereby forming the Fabry-Perot cavity needed for a laser oscillator. Since the emission of light originates from the recombination of injected current carriers, the nature of the radiation depends on the injection mechanism.

The total intensity of the light emitted from the PbTe diodes was observed over a current range of three to four orders of magnitude. At the low current levels, the light intensity data were correlated with data obtained on the electrical characteristics of the diodes. In the low current region (region A), the light intensity, current-voltage and capacitance-voltage data are consistent with the model for photon-assisted tunneling. As the current is increased, the light intensity data indicate the occurrence of a change in the current injection mechanism from photon-assisted tunneling (region A) to thermionic emission (region B). With the further increase of the injection level, the photon-field due to light emission in the diode builds up to the point where stimulated emission (oscillation) occurs. The threshold current at which oscillation begins marks the beginning of a region (region C) where the total light intensity increases very rapidly with the increase in current. This rapid increase in intensity is accompanied by an increase in the number of narrow-band oscillating modes. As the photon density in the cavity continues to increase with the injection level, the intensity gradually enters a region of linear dependence on current (region D), i.e. a region of constant (differential) quantum efficiency.

Data obtained from measurements of the stimulated-mode light-intensity profile and the far-field diffraction pattern (both in the direction perpendicular to the junction-plane) indicate that the active region of high gain (i.e. the region where a population inversion exists) extends to approximately a diffusion length on both sides of the junction. The data also indicate that the confinement of the oscillating modes within the diode cavity is due to a variation in the real part of the dielectric constant, caused by the gain in the medium. A value of τ ≈ 10-9 second for the minority- carrier recombination lifetime (at a diode temperature of 20.4°K) is obtained from the above measurements. This value for τ is consistent with other data obtained independently for PbTe crystals.

Data on the threshold current for stimulated emission (for a diode temperature of 20. 4°K) as a function of the reciprocal cavity length were obtained. These data yield a value of J’th = (400 ± 80) amp/cm2 for the threshold current in the limit of an infinitely long diode-cavity. A value of α = (30 ± 15) cm-1 is obtained for the total (bulk) cavity loss constant, in general agreement with independent measurements of free- carrier absorption in PbTe. In addition, the data provide a value of ns ≈ 10% for the internal spontaneous quantum efficiency. The above value for ns yields values of tb ≈ τ ≈ 10-9 second and ts ≈ 10-8 second for the nonradiative and the spontaneous (radiative) lifetimes, respectively.

The external quantum efficiency (nd) for stimulated emission from diode J-2 (at 20.4° K) was calculated by using the total light intensity vs. diode current data, plus accepted values for the material parameters of the mercury- doped germanium detector used for the measurements. The resulting value is nd ≈ 10%-20% for emission from both ends of the cavity. The corresponding radiative power output (at λ = 6.5 micron) is 120-240 milliwatts for a diode current of 6 amps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coupling a single-mode laser diode with 200 mW to a single-mode fiber (SMF) through an orthonormal aspherical cylindrical lens and a GRIN lens for the intersatellite optical communication system is proposed and demonstrated. We experimentally studied how the coupling efficiency changes with the SMF's position displacement and axial angle variation, and obtained 80 mW output power at the end of the SMF, which shows that the coupling units have satisfied the designed request. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I

The physical phenomena which will ultimately limit the packing density of planar bipolar and MOS integrated circuits are examined. The maximum packing density is obtained by minimizing the supply voltage and the size of the devices. The minimum size of a bipolar transistor is determined by junction breakdown, punch-through and doping fluctuations. The minimum size of a MOS transistor is determined by gate oxide breakdown and drain-source punch-through. The packing density of fully active bipolar or static non-complementary MOS circuits becomes limited by power dissipation. The packing density of circuits which are not fully active such as read-only memories, becomes limited by the area occupied by the devices, and the frequency is limited by the circuit time constants and by metal migration. The packing density of fully active dynamic or complementary MOS circuits is limited by the area occupied by the devices, and the frequency is limited by power dissipation and metal migration. It is concluded that read-only memories will reach approximately the same performance and packing density with MOS and bipolar technologies, while fully active circuits will reach the highest levels of integration with dynamic MOS or complementary MOS technologies.

Part II

Because the Schottky diode is a one-carrier device, it has both advantages and disadvantages with respect to the junction diode which is a two-carrier device. The advantage is that there are practically no excess minority carriers which must be swept out before the diode blocks current in the reverse direction, i.e. a much faster recovery time. The disadvantage of the Schottky diode is that for a high voltage device it is not possible to use conductivity modulation as in the p i n diode; since charge carriers are of one sign, no charge cancellation can occur and current becomes space charge limited. The Schottky diode design is developed in Section 2 and the characteristics of an optimally designed silicon Schottky diode are summarized in Fig. 9. Design criteria and quantitative comparison of junction and Schottky diodes is given in Table 1 and Fig. 10. Although somewhat approximate, the treatment allows a systematic quantitative comparison of the devices for any given application.

Part III

We interpret measurements of permittivity of perovskite strontium titanate as a function of orientation, temperature, electric field and frequency performed by Dr. Richard Neville. The free energy of the crystal is calculated as a function of polarization. The Curie-Weiss law and the LST relation are verified. A generalized LST relation is used to calculate the permittivity of strontium titanate from zero to optic frequencies. Two active optic modes are important. The lower frequency mode is attributed mainly to motion of the strontium ions with respect to the rest of the lattice, while the higher frequency active mode is attributed to motion of the titanium ions with respect to the oxygen lattice. An anomalous resonance which multi-domain strontium titanate crystals exhibit below 65°K is described and a plausible mechanism which explains the phenomenon is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Er3+-Yb3+ codoped Al2O3 has been prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)(3)]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)(3) center dot 5H(2)O] and ytterbium nitrate [Yb(NO3)(3) center dot 5H(2)O]. The phase structure, including only two crystalline types of doped Al2O3 phases, theta and gamma, was obtained for the 1 mol% Er3+ and 5 mol% Yb3+ codoped Al2O3 at the sintering temperature of 1,273 K. By a 978 nm semiconductor laser diodes excitation, the visible up-conversion emissions centered at about 523, 545, and 660 nm were obtained. The temperature dependence of the green up-conversion emissions was studied over a wide temperature range of 300-825 K, and the reasonable agreement between the calculated temperature by the fluorescence intensity ratio (FIR) theory and the measured temperature proved that Er3+-Yb3+ codoped Al2O3 plays an important role in the application of high temperature sensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用面泵浦的CAMIL结构,我们研究了970 nm泵浦的Yb:YAG/YAG复合陶瓷薄片激光器,获得了连续和调Q的激光输出。在连续运转情况下,获得了最高1.05 W的激光输出,中心波长为1031 nm,后腔输出镜透射率为2%。我们同时获得了声光调Q的脉冲输出,重复频率从1 kHz到30 kHz,脉宽分别从166 ns到700 ns。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对激光二极管(LD)抽运固体激光器中大功率线阵激光二极管三向对称侧面抽运的漫反射腔结构进行了研究。激光器使用Nd:YAG作为激光晶体,电光器件材料为KD^*P晶体,漫反射体为陶瓷材料。实验表明,抽运光的利用率和均匀性有较大提高。在重复频率为10Hz下,实现了脉冲宽度8ns,最大平均功率为近2W的1064nm红外激光输出,激光器的效率有显著提高。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

激光器中激光介质采用板条状几何结构可以极大地降低它的热效应,但仍然需要进一步分析其影响,进而优化激光器效率。利用有限元分析方法分析了部分端面抽运的混合腔板条激光器中激光介质的热效应,计算的热透镜焦距与实测结果基本相符。分析了热效应对模式匹配的影响,分析结果对于优化激光器效率、改进谐振腔设计具有一定的参考价值。并在分析的基础上进行了混合腔实验,抽运功率为110 W时,获得连续输出激光功率41.5 W,光-光转换效率约38%,斜效率达58.8%,M2因子为非稳腔方向M2x=1.59,稳定腔方向M2y=1.55。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nd-doped phosphate glass belt lasers pumped by laser diodes are demonstrated. The Nd-glass belt with a large cross-section and a small Fresnel number is air-cooled to provide around 18-W continuous wave (CW) output power with a beam quality factor of My2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-power Ytterbium-doped fiber laser (YDFL) with homemade double clad fiber (DCF) is introduced in this paper. The output power characteristics of a linear cavity fiber laser have been studied theoretically by solving the rate equations and experimentally tested with single- and double-end-pumping configurations. When both ends of the fiber are pumped by two high-power laser diodes with a launched power of similar to 300 W each, a maximum CW output of 444 W is obtained with a slope efficiency of similar to 75%. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the broadband optical amplification in bismuth-doped strontium germanate glass with 808 nm and 980 nm laser diodes (LDs) as excitation sources. The net optical gain has been obtained within the wavelength region of 1272 to 1348 nm with 808 nm laser diode under 0.97 W power. The maximum gain and gain coefficients are 1.23 and 1.03 cm(-1) at 1315 nm, respectively. The signal increment at 1300 nm is 2.8 times with 980 nm LD, under 3 W power. The differential thermal analysis measurement reveals the good thermal stability of the studied glass. This glass could be suggested as a promising gain medium for broadband optical amplifiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present the broadband optical amplification in bismuth-doped germanate glass, at the second telecommunication window when excited with 808 nm and 980 nm laser diodes, respectively. The amplification range is from 1272 nm to 1348 nm wavelength, which is within the O-band of silica fiber communication. This bismuth-doped glass can be used as ultra broadband amplification material for wavelength-division-multiplexing (WDM) at the second telecommunication window.