997 resultados para Diffuse solar irradiance
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
TiO2 nanorodswere prepared by DC reactive magnetron sputtering technique and applied to dye-sensitized solar cells (DSSCs). The length of the TiO2 nanorods was varied from 1 μm to 6 μm. The scanning electronmicroscopy images showthat the nanorods are perpendicular to the substrate. Both the X-ray diffraction patterns and Raman scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and the (220) diffraction peaks have been observed for the TiO2 nanorods. The (101) diffraction peak intensity remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in DSSCs and the effect of the nanorod length on the conversion efficiency has been studied. An optimumphotoelectric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods.
Resumo:
The mannose-resistant hemagglutinating factor (HAF) was extracted and purified from a diffuse adherent Escherichia coli (DAEC) strain belonging to the classic enteropathogenic E. coli (EPEC) serotype (0128). The molecular weight of HAF was estimated to be 18 KDa by SDS-PAGE and 66 KDa by Sephadex G100, suggesting that the native form of HAF consists of 3-4 monomeric HAF. Gold immunolabeling with specific HAF antiserum revealed that the HAF is not a rigid structure like fimbriae on the bacterial surface. The immunofluorescence test using purified HAF on HeLa cells, in addition to the fact that the HAF is distributed among serotypes of EPEC, suggests that HAF is a possible adhesive factor of DAEC strains
Resumo:
This paper presents several forecasting methodologies based on the application of Artificial Neural Networks (ANN) and Support Vector Machines (SVM), directed to the prediction of the solar radiance intensity. The methodologies differ from each other by using different information in the training of the methods, i.e, different environmental complementary fields such as the wind speed, temperature, and humidity. Additionally, different ways of considering the data series information have been considered. Sensitivity testing has been performed on all methodologies in order to achieve the best parameterizations for the proposed approaches. Results show that the SVM approach using the exponential Radial Basis Function (eRBF) is capable of achieving the best forecasting results, and in half execution time of the ANN based approaches.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Para a obtenção do Grau de Mestre em Energia e Bioenergia
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação de Mestrado em Conservação e Restauro área de especialização: Documentos Gráficos
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia de Materiais
Resumo:
Currently excessive fossil fuel consumption has become a serious problem. People are searching for new solutions of energy production and there are several options to obtain alternative sources of energy without further devastating the already destroyed environment. One of these solutions is growing microalgae, from which biodiesel can be obtained. The microalgae production is a growing business because of its many useful compounds. In order to collect these compounds microalgae must first be harvested and then dried. Nowadays the solutions used for drying use too much energy and therefore are too expensive and not sustainable. The goal of this project, one of the possible choices during the EPS@ISEP 2013 Spring, was to develop a solar microalgae dryer. The multinational team involved in its development was composed of five students, from distinct countries and fields of study, and was the responsible for designing a solar microalgae dryer prototype for the microalgae laboratory of the chemical engineering department at ISEP, suitable for future tests and incorporating control process (in order not to destroy the microalgae during the drying process). The solar microalgae dryer was built to work as a distiller that gets rid of the excess water from the microalgae suspension. This paper presents a possible solution for this problem, the steps to create the device to harvest the microalgae by drying them with the use of solar energy (also used as an energy source for the solar dryer control system), the technologies used to build the solar microalgae dryer, and the benefits it presents compared to current solutions. It also presents the device from the ethical and sustainable viewpoint. Such alternative to already existing methods is competitive as far as energy usage is concerned.
Resumo:
Primary cutaneous follicle center lymphoma (PCFCL) is characterized by a proliferation of follicle center cells in the skin. A definitive diagnosis is frequently delayed because of difficulties in interpretation of the histopathologic findings. It has an excellent prognosis with a 5-year survival over 95% and its risk of transformation has not been established. We describe a case report of man with a gastric diffuse large B-cell lymphoma (DLBCL) referred to our clinic because of nodules in the back that had gradually developed over a period of 10 years. A biopsy performed 3 years before was interpreted as reactive follicular hyperplasia. A new skin biopsy revealed a diffuse large B-cell lymphoma and immunoglobulin heavy chain gene rearrangements from the initial skin biopsy (PCBCL) and the DLBCL gastric biopsy were studied by polymerase chain reaction and an identical clonal rearrangement was detected which was highly suggestive of a transformation lymphoma.
Resumo:
Dissertação para a obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão do Território, área de especialização em Detecção Remota e SIG
Resumo:
The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather events. Transportation is one of the main uses of energy, and its excessive fossil fuel dependency is driving the search for alternative and sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. The process includes harvesting and drying, two energy consuming steps, which are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the deontological ethics, social compromise skills and sustainable development awareness of the students.