960 resultados para Design of new Inorganic Compounds
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Resumo:
The cemeterial units, are places of social practices of everyday life and worship and the tomb where nostalgia can be externalized and the memory of the deceased revered. In Western societies we can find a category of artifacts meant to evoke the memory or honor the dead. In this paper we we mention three examples of products that enabled a reflection on the concepts that gave rise to their ways, and that risks to fit them into a new "material culture", in that it may have created a break with the traditional system codes and standards shared by companies, and its manifestations in relation to the physical creation of this category of products. This work offers a reflection on the Design Products.What probably makes it special is the field where it is located: the design of products in one post mortem memory. Usually made of granite rock or marble, have the form of plate or tablet, open book or rolled sheet. On one side have a photograph of the person who intend to honor and inscriptions. The thought of inherent design of this work put on one side the intricate set of emotions that this type of product can generate, and other components more affordable, and concerning the form, function and object interactions with users and with use environments. In the definition of the problem it was regarded as mandatory requirements: differentiation, added value and durability as key objectives.The first two should be manifested in the various components / product attributes. The aesthetic and material/structural durability of product necessarily imply the introduction of qualifying terms and quantitative weights, which positively influence the generation and evaluation of concepts based on the set of 10 principles for the project that originated a matrix as a tool to aid designing products. The concrete definition of a target audience was equally important. At this stage, the collaboration of other experts in the fields of psychology and sociology as disciplines with particular ability to understand individuals and social phenomena respectively was crucial. It was concluded that a product design to honor someone post mortem, should abandon the more traditional habits and customs to focus on identifying new audiences. Although at present it can be considered a niche market, it is believed that in the future may grow as well as their interest in this type of products.
Resumo:
Cassava contributes significantly to biobased material development. Conventional approaches for its bio-derivative-production and application cause significant wastes, tailored material development challenges, with negative environmental impact and application limitations. Transforming cassava into sustainable value-added resources requires redesigning new approaches. Harnessing unexplored material source, and downstream process innovations can mitigate challenges. The ultimate goal proposed an integrated sustainable process system for cassava biomaterial development and potential application. An improved simultaneous release recovery cyanogenesis (SRRC) methodology, incorporating intact bitter cassava, was developed and standardized. Films were formulated, characterised, their mass transport behaviour, simulating real-distribution-chain conditions quantified, and optimised for desirable properties. Integrated process design system, for sustainable waste-elimination and biomaterial development, was developed. Films and bioderivatives for desired MAP, fast-delivery nutraceutical excipients and antifungal active coating applications were demonstrated. SRRC-processed intact bitter cassava produced significantly higher yield safe bio-derivatives than peeled, guaranteeing 16% waste-elimination. Process standardization transformed entire root into higher yield and clarified colour bio-derivatives and efficient material balance at optimal global desirability. Solvent mass through temperature-humidity-stressed films induced structural changes, and influenced water vapour and oxygen permeability. Sevenunit integrated-process design led to cost-effectiveness, energy-efficient and green cassava processing and biomaterials with zero-environment footprints. Desirable optimised bio-derivatives and films demonstrated application in desirable in-package O2/CO2, mouldgrowth inhibition, faster tablet excipient nutraceutical dissolutions and releases, and thymolencapsulated smooth antifungal coatings. Novel material resources, non-root peeling, zero-waste-elimination, and desirable standardised methodology present promising process integration tools for sustainable cassava biobased system development. Emerging design outcomes have potential applications to mitigate cyanide challenges and provide bio-derivative development pathways. Process system leads to zero-waste, with potential to reshape current style one-way processes into circular designs modelled on nature's effective approaches. Indigenous cassava components as natural material reinforcements, and SRRC processing approach has initiated a process with potential wider deployment in broad product research development. This research contributes to scientific knowledge in material science and engineering process design.
Resumo:
In knowledge technology work, as expressed by the scope of this conference, there are a number of communities, each uncovering new methods, theories, and practices. The Library and Information Science (LIS) community is one such community. This community, through tradition and innovation, theories and practice, organizes knowledge and develops knowledge technologies formed by iterative research hewn to the values of equal access and discovery for all. The Information Modeling community is another contributor to knowledge technologies. It concerns itself with the construction of symbolic models that capture the meaning of information and organize it in ways that are computer-based, but human understandable. A recent paper that examines certain assumptions in information modeling builds a bridge between these two communities, offering a forum for a discussion on common aims from a common perspective. In a June 2000 article, Parsons and Wand separate classes from instances in information modeling in order to free instances from what they call the “tyranny” of classes. They attribute a number of problems in information modeling to inherent classification – or the disregard for the fact that instances can be conceptualized independent of any class assignment. By faceting instances from classes, Parsons and Wand strike a sonorous chord with classification theory as understood in LIS. In the practice community and in the publications of LIS, faceted classification has shifted the paradigm of knowledge organization theory in the twentieth century. Here, with the proposal of inherent classification and the resulting layered information modeling, a clear line joins both the LIS classification theory community and the information modeling community. Both communities have their eyes turned toward networked resource discovery, and with this conceptual conjunction a new paradigmatic conversation can take place. Parsons and Wand propose that the layered information model can facilitate schema integration, schema evolution, and interoperability. These three spheres in information modeling have their own connotation, but are not distant from the aims of classification research in LIS. In this new conceptual conjunction, established by Parsons and Ward, information modeling through the layered information model, can expand the horizons of classification theory beyond LIS, promoting a cross-fertilization of ideas on the interoperability of subject access tools like classification schemes, thesauri, taxonomies, and ontologies. This paper examines the common ground between the layered information model and faceted classification, establishing a vocabulary and outlining some common principles. It then turns to the issue of schema and the horizons of conventional classification and the differences between Information Modeling and Library and Information Science. Finally, a framework is proposed that deploys an interpretation of the layered information modeling approach in a knowledge technologies context. In order to design subject access systems that will integrate, evolve and interoperate in a networked environment, knowledge organization specialists must consider a semantic class independence like Parsons and Wand propose for information modeling.
Resumo:
This chapter aims to develop a new method for the economical evaluation of Hybrid Systems for electricity production. The different types of renewable sources are specifically evaluated in the economical performance of the overall equipment. The presented methodology was applied to evaluate the design of a photovoltaic-wind-diesel hybrid system to produce electricity for a community in the neighbourhood of Luanda, Angola. Once the hybrid generator is selected, it is proposed to provide the system with a supervisory control strategy to maximize its operating efficiency.
Resumo:
This work mainly arises from the necessity to support the rapid introduction of different biobased polymers that the industrial sector has been facing lately. Indeed, while considerable efforts are being made to find environmentally and economically sustainable materials, less attention is paid to their need to be properly compounded to fulfil increasingly rigorous technical and quality requirements. Therefore, there is a strong demand for the development of a novel generation of compatible additives able to improve the properties of biobased polymers while respecting sustainability. With this in mind, a new class of biobased plasticizers is herein proposed. Five different ketal-diesters were selectively synthesized starting from levulinic acid, a promising renewable chemical platform. These molecules were added to poly(vinyl chloride) as model polymer to test their plasticizing effectiveness. Complete morphological, thermal and viscoelastic characterizations showed a clear correlation between the structural features of the ketal-esters and the properties of the material. In addition, no significant leaching was found in both hydrophilic and lipophilic environments. Importantly, the proposed ketal-diesters performed comparably and, in some cases, even better than commercial plasticizers. The same molecules were then added to bacterial poly(3-hydroxybutyrate), a semicrystalline polyester characterized by poor thermal and mechanical properties. Morphology assessments showed no phase separation and the plasticizing effectiveness was confirmed by thermal and viscoelastic analyses, while leaching tests showed low extraction values. Readily usable fractions with controlled structure and tailored properties were obtained from highly heterogeneous industrial grade Kraft lignin. These fractions were then added to poly(vinyl alcohol). Promising preliminary results in terms of compatibility were achieved, with thermograms showing only one glass transition temperature. Finally, a fully biobased glycerol-trilevulinate was successfully synthesized by means of a mild and solvent-free route. Its plasticizing effectiveness was evaluated on poly(vinyl chloride), showing a significant decrease of the glass transition temperature of the material.
Resumo:
In 2017, Chronic Respiratory Diseases accounted for almost four million deaths worldwide. Unfortunately, current treatments are not definitive for such diseases. This unmet medical need forces the scientific community to increase efforts in the identification of new therapeutic solutions. PI3K delta plays a key role in mechanisms that promote airway chronic inflammation underlying Asthma and COPD. The first part of this project was dedicated to the identification of novel PI3K delta inhibitors. A first SAR expansion of a Hit, previously identified by a HTS campaign, was carried out. A library of 43 analogues was synthesised taking advantage of an efficient synthetic approach. This allowed the identification of an improved Hit of nanomolar enzymatic potency and moderate selectivity for PI3K delta over other PI3K isoforms. However, this compound exhibited low potency in cell-based assays. Low cellular potency was related to sub optimal phys-chem and ADME properties. The analysis of the X-ray crystal structure of this compound in human PI3K delta guided a second tailored SAR expansion that led to improved cellular potency and solubility. The second part of the thesis was focused on the rational design and synthesis of new macrocyclic Rho-associated protein kinases (ROCKs) inhibitors. Inhibition of these kinases has been associated with vasodilating effects. Therefore, ROCKs could represent attractive targets for the treatment of pulmonary arterial hypertension (PAH). Known ROCK inhibitors suffer from low selectivity across the kinome. The design of macrocyclic inhibitors was considered a promising strategy to obtain improved selectivity. Known inhibitors from literature were evaluated for opportunities of macrocyclization using a knowledge-based approach supported by Computer Aided Drug Design (CADD). The identification of a macrocyclic ROCK inhibitor with enzymatic activity in the low micro molar range against ROCK II represented a promising result that validated this innovative approach in the design of new ROCKs inhibitors.
Resumo:
In the last few decades, scientific evidence has pointed out the health-beneficial effects of phenolic compounds in foods, including a decrease in risk of developing degenerative and chronic diseases, known to be caused by oxidative stress. In this frame can be inserted research carried out during my PhD thesis, which concerns the phytochemical investigation of phenolic composition in sweet cherries (Prunus avium L.), apple fruits (Malus domestica L.) and quinoa seeds (Chenopodium quinoa Willd.). The first project was focused on the investigation of phytochemical profile and nutraceutical value of fruits of new sweet cherry cultivars. Their phenolic profile and antioxidant activity were investigated and compared with those of commonly commercialized cultivars. Their nutraceutical value was evaluated in terms of antioxidant/neuroprotective capacity in neuron-like SH-SY5Y cells, in order to investigate their ability to counteract the oxidative stress and/or neurodegeneration process The second project was focused on phytochemical analysis of phenolic compounds in apples of ancient cultivars with the aim of selecting the most diverse cultivars, that will then be assayed for their anti-carcinogenic and anti-proliferative activities against the hepato-biliary and pancreatic tumours. The third project was focused on the analysis of polyphenolic pattern of seeds of two quinoa varieties grown at different latitudes. Analysis of phenolic profile and in vitro antioxidant activity of seed extracts both in their free and soluble-conjugated forms, showed that the accumulation of some classes of flavonoids is strictly regulated by environmental factors, even though the overall antioxidant capacity does not differ in quinoa Regalona grown in Chile and Italy. During the internship period carried out at the Department of Organic Chemistry at Universidad Autónoma de Madrid (UAM), it was achieved the isolation of two pentacyclic triterpenoids, from an endemic Peruvian plant, Jatropha macrantha Müll. Arg., with bio-guided fractionation technique.
Resumo:
An analysis and a subsequent solution is here presented. This document is about a groin design able to contrast the erosion actions given by waves in Lido di Dante. Advantages will be visible also for Fiumi Uniti's inlet, in the north side of the shoreline. Beach future progression and growth will be subjected to monitoring actions in the years after groin construction. The resulting effects of the design will have a positive impact not only on the local fauna and environment, but also, a naturalistic appeal will increase making new type of tourists coming not only for recreational purposes. The design phase is focused on possible design alternatives and their features. Particular interest is given to scouring phenomena all around the groin after its construction. Groin effects will impact not only on its south side, instead they will cause an intense erosion process on the downdrift front. Here, many fishing hut would be in danger, thus a beach revetment structure is needed to avoid any future criticality. In addiction, a numerical model based on a generalized shoreline change numerical model, also known as GENESIS, has been applied to the study area in order to perform a simplistic analysis of the shoreline and its future morphology. Critical zones are visible in proximity of the Fiumi Uniti's river inlet, where currents from the sea and the river itself start the erosion process that is affecting Lido di Dante since mid '80s, or even before. The model is affected by several assumptions that make results not to be interpreted as a real future trend of the shore. Instead the model allows the user to have a more clear view about critical processes induced by monochromatic inputed waves. In conclusion, the thesis introduce a wide analysis on a complex erosion process that is affecting many shoreline nowadays. A groin design is seen as a hard solution it is considered to be the only means able to decrease the rate of erosion.
Resumo:
Next to conventional solar panels that harvest direct sunlight, p-type dye-sensitized solar cells (DSSCs) have been developed, which are able to harvest diffuse sunlight. Due to unwanted charge recombination events p-type DSSCs exhibit low power conversion efficiencies (PCEs). Previous research has shown that dye-redox mediator (RM) interactions can prevent these recombination events, resulting in higher PCEs. It is unknown how the nature of dye-RM interactions affects the PCEs of pseudorotaxane-based solar cells. In this research this correlation is investigated by comparing one macrocycle, the 3-NDI, in combination with the three dyes that contains a recognition sites. 2D-DOSY-NMR experiments have been conducted to evaluate the diffusion constants (LogD) of the three couple. The research project has been stopped due to the coronavirus pandemic. The continuation of this thesis would have been to synthesize a dye on the basis of the data obtained from the diffusion tests and attempt the construction of a solar cell to then evaluate its effectiveness. During my training period I synthetized new Fe(0) cyclopentadienone compounds bearing a N-Heterocyclic Carbene ligand. The aim of the thesis was to achieve water solubility by modifications of the cyclopentadienone ligand. These new complexes have been modified using a sulfonation reaction, replacing an hydroxyl with a sulfate group, on the alkyl backbone of the cyclopentadienone ligand. All the complexes were characterized with IR, ESI-MS and NMR spectroscopy, and a new Fe(0) cyclopentadienone complex, involved as an intermediate, was obtained as a single crystal and was characterized also with X-Ray spectroscopy.
Resumo:
The trend related to the turnover of internal combustion engine vehicles with EVs goes by the name of electrification. The push electrification experienced in the last decade is linked to the still ongoing evolution in power electronics technology for charging systems. This is the reason why an evolution in testing strategies and testing equipment is crucial too. The project this dissertation is based on concerns the investigation of a new EV simulator design. that optimizes the structure of the testing equipment used by the company who commissioned this work. Project requirements can be summarized in the following two points: space occupation reduction and parallel charging implementation. Some components were completely redesigned, and others were substituted with equivalent ones that could perform the same tasks. In this way it was possible to reduce the space occupation of the simulator, as well as to increase the efficiency of the testing device. Moreover, the possibility of conjugating different charging simulations could be investigated by parallelly launching two testing procedures on a unique machine, properly predisposed for supporting the two charging protocols used. On the back of the results achieved in the body of this dissertation, a new design for the EV simulator was proposed. In this way, space reduction was obtained, and space occupation efficiency was improved with the proposed new design. The testing device thus resulted to be way more compact, enabling to gain in safety and productivity, along with a 25% cost reduction. Furthermore, parallel charging was implemented in the proposed new design since the conducted tests clearly showed the feasibility of parallel charging sessions. The results presented in this work can thus be implemented to build the first prototype of the new EV simulator.
Resumo:
Neuroinflammatory pathways are main culprits of neurodegenerative diseases' onset and progression, including Alzheimer’s disease (AD). On this basis, several anti-inflammatory drugs were repurposed in clinical trials. However, they have failed, probably because neuroinflammation is a complex network, still not fully understood. From these evidences, this thesis focused on the design and synthesis of new chemical entities as potential neuroinflammatory drugs or chemical probes. Projects 1 and 2 aimed to multi-target-directed ligand (MTDL) development to target neuroinflammation in AD. Polypharmacology by MTDLs is considered one of the most promising strategies to face the multifactorial nature of neurodegenerative diseases. Particularly, Project 1 took inspiration from a cromolyn-ibuprofen drug combination polypharmacological approach, which was recently investigated in AD clinical trials. Based on that, two cromolyn-(S)-ibuprofen codrug series were designed and synthesized. Parent drugs were combined via linking or fusing strategies in 1:2 or 1:1 ratio, by means of hydrolyzable bonds. Project 2 started from a still ongoing AD clinical trial on investigational drug neflamapimod. It is a selective inhibitor of p38α-MAPK, a kinase strictly involved in neuroinflammatory pathways. On the other side, rasagiline, an anti-Parkinson drug, was also repurposed as AD treatment. Indeed, rasagiline’s propargylamine fragment demonstrated to be responsible not only for the MAO-B selective inhibition, but also for the neuroprotective activity. Thus, to synergistically combine these two effects into single-molecules, a small set of neflamapimod-rasagiline hybrids was developed. In the end BMX, a poorly investigated kinase, which seems to be involved in pro-inflammatory mediator production, was explored for the development of new chemical probes. High-quality chemical probes are a powerful tool in target validation and starting points for the development of new drug candidates. Thus, Project 3 focused on the design and synthesis of two series of optimized BMX covalent inhibitors as selective chemical probes.
Resumo:
This Ph.D. thesis concerns the synthesis of nanostructured Cu-containing materials to be used as electrode modifiers for the CO2 electroreduction in aqueous phase and the evaluation of their catalytic performances. Inspired by the fascinating concept of the artificial photosynthesis-oriented systems, several catalytic layers were electrochemically loaded on carbonaceous gas diffusion membranes, i.e., 3D structures that allow the design of eco-friendly materials for applications in green carbon recycling processes. In particular, early studies on Cu(I-II)-Cu(0) nanostructured materials were carried out to produce films on 4 cm2 sized supports by means of a fast and low-cost electrochemical procedure. Besides, through a screening of potentials, it was possible to find out a selective value for the CH3COOH production at -0.4 V vs RHE with a maximum productivity (1h reaction), ensured by the presence of the Cu+/Cu0 active redox couple (0.31 mmol gcat-1 h-1). On the basis of these results, further optimisations of the electrocatalyst chemical composition were carried out with the aim of (i) facilitating the interaction with CO2, (ii) increasing the dispersion of the catalytic active phase, and (iii) enhancing the CH3COOH productivity. To this aim, novel electrocatalysts based on layered double hydroxides (LDHs) were optimised, having as a final goal the formation of a new Cu2O-Cu0 based electrocatalyst derived from electrochemically achieved CuMgAl LDHs, subjected to calcination and reduction processes. The as-obtained electrocatalysts were tested for the selective production of CH3COOH and unprecedented results were obtained with the pristine CuMgAl LDH (2.0 mmol gcat-1 h-1). Additional characterisations of such an electrocatalyst have highlighted the possibility to achieve a ternary LDH in intimate contact with Cu2O-Cu0 species starting from the electrochemical deposition. The presence of these species, along with an alkaline environment on the electrode surface, were essential to preserve the selectivity towards the desired product, as confirmed by further operando studies.
Resumo:
Nowadays, the chemical industry has reached significant goals to produce essential components for human being. The growing competitiveness of the market caused an important acceleration in R&D activities, introducing new opportunities and procedures for the definition of process improvement and optimization. In this dynamicity, sustainability is becoming one of the key aspects for the technological progress encompassing economic, environmental protection and safety aspects. With respect to the conceptual definition of sustainability, literature reports an extensive discussion of the strategies, as well as sets of specific principles and guidelines. However, literature procedures are not completely suitable and applicable to process design activities. Therefore, the development and introduction of sustainability-oriented methodologies is a necessary step to enhance process and plant design. The definition of key drivers as support system is a focal point for early process design decisions or implementation of process modifications. In this context, three different methodologies are developed to support design activities providing criteria and guidelines in a sustainable perspective. In this framework, a set of key Performance Indicators is selected and adopted to characterize the environmental, safety, economic and energetic aspects of a reference process. The methodologies are based on heat and material balances and the level of detailed for input data are compatible with available information of the specific application. Multiple case-studies are defined to prove the effectiveness of the methodologies. The principal application is the polyolefin productive lifecycle chain with particular focus on polymerization technologies. In this context, different design phases are investigated spanning from early process feasibility study to operative and improvements assessment. This flexibility allows to apply the methodologies at any level of design, providing supporting guidelines for design activities, compare alternative solutions, monitor operating process and identify potential for improvements.