878 resultados para Depth Estimation,Deep Learning,Disparity Estimation,Computer Vision,Stereo Vision
Resumo:
Peer-reviewed
Resumo:
Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.
Resumo:
En los tiempos que corren la robótica forma uno de los pilares más importantes en la industria y una gran noticia para los ingenieros es la referente a las ventas de estos, ya que en 2013, unos 179.000 robots industriales se vendieron en todo el mundo, de nuevo un máximo histórico y un 12% más que en 2012 según datos de la IFR (International Federation of Robotics). Junto a esta noticia, la robótica colaborativa entra en juego en el momento que los robots y los seres humanos deben compartir el lugar de trabajo sin que nos veamos excluidos por las maquinas, por lo tanto lo que se intenta es que los robots mejoren la calidad del trabajo al hacerse cargo de los trabajos peligrosos, tediosos y sucios que no son posibles o seguros para los seres humanos. Otro concepto muy importante y directamente relacionado con lo anterior que está muy en boga y se escucha desde hace relativamente poco tiempo es el de la fabrica del futuro o “Factory Of The Future” la cual intenta que los operarios y los robots encuentren la sintonía en el entorno laboral y que los robots se consideren como maquinaria colaborativa y no como sustitutiva, considerándose como uno de los grandes nichos productivos en plena expansión. Dejando a un lado estos conceptos técnicos que nunca debemos olvidar si nuestra carrera profesional va enfocada en este ámbito industrial, el tema central de este proyecto está basado, como no podía ser de otro modo, en la robótica, que junto con la visión artificial, el resultado de esta fusión, ha dado un manipulador robótico al que se le ha dotado de cierta “inteligencia”. Se ha planteado un sencillo pero posible proceso de producción el cual es capaz de almacenar piezas de diferente forma y color de una forma autónoma solamente guiado por la imagen capturada con una webcam integrada en el equipo. El sistema consiste en una estructura soporte delimitada por una zona de trabajo en la cual se superponen unas piezas diseñadas al efecto las cuales deben ser almacenadas en su lugar correspondiente por el manipulador robótico. Dicho manipulador de cinemática paralela está basado en la tecnología de cables, comandado por cuatro motores que le dan tres grados de libertad (±X, ±Y, ±Z) donde el efector se encuentra suspendido sobre la zona de trabajo moviéndose de forma que es capaz de identificar las características de las piezas en situación, color y forma para ser almacenadas de una forma ordenada según unas premisas iníciales.
Resumo:
The number of digital images has been increasing exponentially in the last few years. People have problems managing their image collections and finding a specific image. An automatic image categorization system could help them to manage images and find specific images. In this thesis, an unsupervised visual object categorization system was implemented to categorize a set of unknown images. The system is unsupervised, and hence, it does not need known images to train the system which needs to be manually obtained. Therefore, the number of possible categories and images can be huge. The system implemented in the thesis extracts local features from the images. These local features are used to build a codebook. The local features and the codebook are then used to generate a feature vector for an image. Images are categorized based on the feature vectors. The system is able to categorize any given set of images based on the visual appearance of the images. Images that have similar image regions are grouped together in the same category. Thus, for example, images which contain cars are assigned to the same cluster. The unsupervised visual object categorization system can be used in many situations, e.g., in an Internet search engine. The system can categorize images for a user, and the user can then easily find a specific type of image.
Resumo:
Este trabajo se centra en el uso del lenguaje Python y la librería OpenCV de visión por computador para el seguimiento de crustáceos marinos en condiciones experimentales y determinar su comportamiento en un entorno social.
Resumo:
El objetivo de esta investigación es comprobar la utilidad de las técnicas actuales de reconocimiento facial a través de la visión por computador en entornos museísticos. Para alcanzar este fin, he seguido las estrategias de diseño y creación para crear una aplicación que me permita posteriormente realizar una serie de experimentos, los cuales me proporcionarán los datos necesarios con los que evaluar la funcionalidad de estas técnicas existentes en obras de arte, en mi caso concretamente, sobre cuadros.
Resumo:
Peer-reviewed
Resumo:
Multispectral images are becoming more common in the field of remote sensing, computer vision, and industrial applications. Due to the high accuracy of the multispectral information, it can be used as an important quality factor in the inspection of industrial products. Recently, the development on multispectral imaging systems and the computational analysis on the multispectral images have been the focus of a growing interest. In this thesis, three areas of multispectral image analysis are considered. First, a method for analyzing multispectral textured images was developed. The method is based on a spectral cooccurrence matrix, which contains information of the joint distribution of spectral classes in a spectral domain. Next, a procedure for estimating the illumination spectrum of the color images was developed. Proposed method can be used, for example, in color constancy, color correction, and in the content based search from color image databases. Finally, color filters for the optical pattern recognition were designed, and a prototype of a spectral vision system was constructed. The spectral vision system can be used to acquire a low dimensional component image set for the two dimensional spectral image reconstruction. The data obtained by the spectral vision system is small and therefore convenient for storing and transmitting a spectral image.
Resumo:
La visualització científica estudia i defineix algorismes i estructures de dades que permeten fer comprensibles conjunts de dades a través d’imatges. En el cas de les aplicacions mèdiques les dades que cal interpretar provenen de diferents dispositius de captació i es representen en un model de vòxels. La utilitat d’aquest model de vòxels depèn de poder-lo veure des del punt de vista ideal, és a dir el que aporti més informació. D’altra banda, existeix la tècnica dels Miralls Màgics que permet veure el model de vòxels des de diferents punts de vista alhora i mostrant diferents valors de propietat a cada mirall. En aquest projecte implementarem un algorisme que permetrà determinar el punt de vista ideal per visualitzar un model de vòxels així com també els punts de vista ideals per als miralls per tal d’aconseguir el màxim d’informació possible del model de vòxels. Aquest algorisme es basa en la teoria de la informació per saber quina és la millor visualització. L’algorisme també permetrà determinar l’assignació de colors òptima per al model de vòxels
Resumo:
Local features are used in many computer vision tasks including visual object categorization, content-based image retrieval and object recognition to mention a few. Local features are points, blobs or regions in images that are extracted using a local feature detector. To make use of extracted local features the localized interest points are described using a local feature descriptor. A descriptor histogram vector is a compact representation of an image and can be used for searching and matching images in databases. In this thesis the performance of local feature detectors and descriptors is evaluated for object class detection task. Features are extracted from image samples belonging to several object classes. Matching features are then searched using random image pairs of a same class. The goal of this thesis is to find out what are the best detector and descriptor methods for such task in terms of detector repeatability and descriptor matching rate.
Resumo:
This study focuses on the integration of eco-innovation principles into strategy and policy at the regional level. The importance of regions as a level for integrating eco-innovative programs and activities served as the point of interest for this study. Eco-innovative activities and technologies are seen as means to meet sustainable development objective of improving regions’ quality of life. This study is conducted to get an in-depth understanding and learning about eco-innovation at regional level, and to know the basic concepts that are important in integrating eco-innovation principles into regional policy. Other specific objectives of this study are to know how eco-innovation are developed and practiced in the regions of the EU, and to analyze the main characteristic features of an eco-innovation model that is specifically developed at Päijät-Häme Region in Finland. Paijät-Häme Region is noted for its successful eco-innovation strategies and programs, hence, taken as casework in this study. Both primary (interviews) and secondary data (publicly available documents) are utilized in this study. The study shows that eco-innovation plays an important role in regional strategy as reviewed based on the experience of other regions in the EU. This is because of its localized nature which makes it easier to facilitate in a regional setting. Since regional authorities and policy-makers are normally focused on solving its localized environmental problems, eco-innovation principles can easily be integrated into regional strategy. The case study highlights Päijät-Häme Region’s eco-innovation strategies and projects which are characterized by strong connection of knowledge-producing institutions. Policy instruments supporting eco-innovation (e.g. environmental technologies) are very much focused on clean technologies, hence, justifying the formation of cleantech clusters and business parks in Päijät-Häme Region. A newly conceptualized SAMPO model of eco-innovation has been developed in Päijät-Häme Region to better capture the region’s characteristics and to eventually replace the current model employed by the Päijät-Häme Regional Authority. The SAMPO model is still under construction, however, review of its principles points to some of its three important spearheads – practice-based innovation, design (eco-design) and clean technology or environmental technology (environment).
Resumo:
In this thesis, simple methods have been sought to lower the teacher’s threshold to start to apply constructive alignment in instruction. From the phases of the instructional process, aspects that can be improved with little effort by the teacher have been identified. Teachers have been interviewed in order to find out what students actually learn in computer science courses. A quantitative analysis of the structured interviews showed that in addition to subject specific skills and knowledge, students learn many other skills that should be mentioned in the learning outcomes of the course. The students’ background, such as their prior knowledge, learning style and culture, affects how they learn in a course. A survey was conducted to map the learning styles of computer science students and to see if their cultural background affected their learning style. A statistical analysis of the data indicated that computer science students are different learners than engineering students in general and that there is a connection between the student’s culture and learning style. In this thesis, a simple self-assessment scale that is based on Bloom’s revised taxonomy has been developed. A statistical analysis of the test results indicates that in general the scale is quite reliable, but single students still slightly overestimate or under-estimate their knowledge levels. For students, being able to follow their own progress is motivating, and for a teacher, self-assessment results give information about how the class is proceeding and what the level of the students’ knowledge is.
Resumo:
The large and growing number of digital images is making manual image search laborious. Only a fraction of the images contain metadata that can be used to search for a particular type of image. Thus, the main research question of this thesis is whether it is possible to learn visual object categories directly from images. Computers process images as long lists of pixels that do not have a clear connection to high-level semantics which could be used in the image search. There are various methods introduced in the literature to extract low-level image features and also approaches to connect these low-level features with high-level semantics. One of these approaches is called Bag-of-Features which is studied in the thesis. In the Bag-of-Features approach, the images are described using a visual codebook. The codebook is built from the descriptions of the image patches using clustering. The images are described by matching descriptions of image patches with the visual codebook and computing the number of matches for each code. In this thesis, unsupervised visual object categorisation using the Bag-of-Features approach is studied. The goal is to find groups of similar images, e.g., images that contain an object from the same category. The standard Bag-of-Features approach is improved by using spatial information and visual saliency. It was found that the performance of the visual object categorisation can be improved by using spatial information of local features to verify the matches. However, this process is computationally heavy, and thus, the number of images must be limited in the spatial matching, for example, by using the Bag-of-Features method as in this study. Different approaches for saliency detection are studied and a new method based on the Hessian-Affine local feature detector is proposed. The new method achieves comparable results with current state-of-the-art. The visual object categorisation performance was improved by using foreground segmentation based on saliency information, especially when the background could be considered as clutter.
Resumo:
Visual object tracking has been one of the most popular research topics in the field of computer vision recently. Specifically, hand tracking has attracted significant attention since it would enable many useful practical applications. However, hand tracking is still a very challenging problem which cannot be considered solved. The fact that almost every aspect of hand appearance can change is the fundamental reason for this difficulty. This thesis focused on 2D-based hand tracking in high-speed camera videos. During the project, a toolbox for this purpose was collected which contains nine different tracking methods. In the experiments, these methods were tested and compared against each other with both high-speed videos recorded during the project and publicly available normal speed videos. The results revealed that tracking accuracies varied considerably depending on the video and the method. Therefore, no single method was clearly the best in all videos, but three methods, CT, HT, and TLD, performed better than the others overall. Moreover, the results provide insights about the suitability of each method to different types and situations of hand tracking.
Resumo:
The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.