981 resultados para Dental Enamel Hypoplasia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental products with casein phosphopeptide--amorphous calcium phosphate-nanocomplexes (CPP-ACP) are used in several tooth products (toothpastes, chewing gums, mouthrinses) and are as well used in dental filling material. CPP-ACP containing products are supposed to enhance remineralisation of dental hard tissues und thus might play a major role in prevention and therapy of initial caries or erosively dissolved enamel. Furthermore, also in hypersensitive teeth and even cases of hyposalivation, CPP-ACP containig products are supposed to improve the clinical condition. This article aims at three goals: point out the evolvement of CPP-ACP out of milk casein; description of possible biochemical effects of CPP-ACP on dental hard tissues; critical review of the current literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION In this in-vitro study, we aimed to investigate the predictability of the expected amount of stripping using 3 common stripping devices on premolars. METHODS One hundred eighty extracted premolars were mounted and aligned in silicone. Tooth mobility was tested with Periotest (Medizintechnik Gulden, Modautal, Germany) (8.3 ± 2.8 units). The selected methods for interproximal enamel reduction were hand-pulled strips (Horico, Hapf Ringleb & Company, Berlin, Germany), oscillating segmental disks (O-drive-OD 30; KaVo Dental, Biberach, Germany), and motor-driven abrasive strips (Orthofile; SDC Switzerland, Lugano-Grancia, Switzerland). With each device, the operator intended to strip 0.1, 0.2, 0.3, or 0.4 mm on the mesial side of 15 teeth. The teeth were scanned before and after stripping with a 3-dimensional laser scanner. Superposition and measurement of stripped enamel on the most mesial point of the tooth were conducted with Viewbox software (dHal Software, Kifissia, Greece). The Wilcoxon signed rank test and the Kruskal-Wallis test were applied; statistical significance was set at alpha ≤ 0.05. RESULTS Large variations between the intended and the actual amounts of stripped enamel, and between stripping procedures, were observed. Significant differences were found at 0.1 mm of intended stripping (P ≤ 0.05) for the hand-pulled method and at 0.4 mm of intended stripping (P ≤ 0.001 to P = 0.05) for all methods. For all scenarios of enamel reduction, the actual amount of stripping was less than the predetermined and expected amount of stripping. The Kruskal-Wallis analysis showed no significant differences between the 3 methods. CONCLUSIONS There were variations in the stripped amounts of enamel, and the stripping technique did not appear to be a significant predictor of the actual amount of enamel reduction. In most cases, actual stripping was less than the intended amount of enamel reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of the specular reflection intensity was previously reported for the quantification of early dental erosion. Further development of the technique and assembly of the miniaturized pen-size instrument are described. The optical system was adjusted to fit into a handy device which could potentially access different positions in the oral cavity. The assembled instrument could successfully detect early erosion progression in both polished (n=70) and native (n=20) human enamels. Different severities of enamel erosion were induced by varying incubation time of polished enamel in 1% citric acid (pH=3.60, 0.5 to 10 min), while the native incisors were treated in the commercial orange juice (Tropicana Pure Premium®, pH=3.85, 10 to 60 min). The instrument provided a good differentiation between various severities of the erosion in vitro. The size of the measurement spot affected the erosion monitoring in native enamel (human incisors). The erosion measurement in the 0.7-mm (diameter) cervical spots showed systematically lower reflection intensities compared with the analysis of central and incisal small spots. The application of larger spot areas (2.3 mm) for the erosion monitoring revealed no effect (p>0.05) of the spot position on the reflection signal. High variation of the teeth susceptibility toward in vitro erosion was detected in native enamel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This in vitro study investigated the erosion-inhibiting properties of dental rinses during erosion in the presence of the salivary pellicle. The erosion inhibition by a Sn/F containing dental rinse (800 ppm Sn2+, 500 ppm F –, pH = 4.5) was compared with a fluoridated solution (500 ppm F –, pH = 4.5) and water(control). Calcium release and enamel softening were significantly reduced among enamel samples exposed to the Sn/F rinse (group SF)compared to those treated with the fluoride solution (group F) and the control (p 0.05). SEM showed slightly etched enamel interfaces in group SF, whereas the erosion was more pronounced in group F and even more severe in the control group. In conclusion, the Sn/F combination provided the best inhibition of erosion among tested solutions. This study demonstrates the application of different analytical tools for comparative erosion quantification.A strong correlation (r2 ≥ 0.783) was shown between calcium release and enamel softening during demineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorides are used in dental care due to their beneficial effect in tooth enamel de-/remineralization cycles. To achieve a desired constant supply of soluble fluorides in the oral cavity, different approaches have been followed. Here we present results on the preparation of CaF2 particles and their characterization with respect to a potential application as enamel associated fluoride releasing reservoirs. CaF2 particles were synthesized by precipitation from soluble NaF and CaCl2 salt solutions of defined concentrations and their morphology analyzed by scanning electron microscopy. CaF2 particles with defined sizes and shapes could be synthesized by adjusting the concentrations of the precursor salt solutions. Such particles interacted with enamel surfaces when applied at fluoride concentrations correlating to typical dental care products. Fluoride release from the synthesized CaF2 particles was observed to be largely influenced by the concentration of phosphate in the solution. Physiological solutions with phosphate concentration similar to saliva (3.5 mM) reduced the fluoride release from pure CaF2 particles by a factor of 10-20 × as compared to phosphate free buffer solutions. Fluoride release was even lower in human saliva. The fluoride release could be increased by the addition of phosphate in substoichiometric amounts during CaF2 particle synthesis. The presented results demonstrate that the morphology and fluoride release characteristics of CaF2 particles can be tuned and provide evidence of the suitability of synthetic CaF2 particles as enamel associated fluoride reservoirs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental erosion is caused by repeated short episodes of exposure to acids. Dental minerals are calcium-deficient, carbonated hydroxyapatites containing impurity ions such as Na(+), Mg(2+) and Cl(-). The rate of dissolution, which is crucial to the progression of erosion, is influenced by solubility and also by other factors. After outlining principles of solubility and acid dissolution, this chapter describes the factors related to the dental tissues on the one hand and to the erosive solution on the other. The impurities in the dental mineral introduce crystal strain and increase solubility, so dentine mineral is more soluble than enamel mineral and both are more soluble than hydroxyapatite. The considerable differences in structure and porosity between dentine and enamel influence interactions of the tissues with acid solutions, so the relative rates of dissolution do not necessarily reflect the respective solubilities. The rate of dissolution is further influenced strongly by physical factors (temperature, flow rate) and chemical factors (degree of saturation, presence of inhibitors, buffering, pH, fluoride). Temperature and flow rate, as determined by the method of consumption of a product, strongly influence erosion in vivo. The net effect of the solution factors determines the overall erosive potential of different products. Prospects for remineralization of erosive lesions are evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erosive demineralisation causes characteristic histological features. In enamel, mineral is dissolved from the surface, resulting in a roughened structure similar to an etching pattern. If the acid impact continues, the initial surface mineral loss turns into bulk tissue loss and with time a visible defect can develop. The microhardness of the remaining surface is reduced, increasing the susceptibility to physical wear. The histology of eroded dentine is much more complex because the mineral component of the tissue is dissolved by acids whereas the organic part is remaining. At least in experimental erosion, a distinct zone of demineralised organic material develops, the thickness of which depends on the acid impact. This structure is of importance for many aspects, e.g. the progression rate or the interaction with active agents and physical impacts, and needs to be considered when quantifying mineral loss. The histology of experimental erosion is increasingly well understood, but there is lack of knowledge about the histology of in vivo lesions. For enamel erosion, it is reasonable to assume that the principal features may be similar, but the fate of the demineralised dentine matrix in the oral cavity is unclear. As dentine lesions normally appear hard clinically, it can be assumed that it is degraded by the variety of enzymes present in the oral cavity. Erosive tooth wear may lead to the formation of reactionary or reparative dentine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental caries is the most common chronic disease worldwide. It is characterized by the demineralization of tooth enamel caused by acid produced by cariogenic dental bacteria growing on tooth surfaces, termed bacterial biofilms. Cariogenesis is a complex biological process that is influence by multiple factors and is not attributed to a sole causative agent. Instead, caries is associated with multispecies microbial biofilm communities composed of some bacterial species that directly influence the development of a caries lesion and other species that are seemingly benign but must contribute to the community in an uncharacterized way. Clinical analysis of dental caries and its microbial populations is challenging due to many factors including low sensitivity of clinical measurement tools, variability in saliva chemistry, and variation in the microbiota. Our laboratory has developed an in vitro anaerobic biofilm model for dental carries to facilitate both clinical and basic research-based analyses of the multispecies dynamics and individual factors that contribute to cariogenicity. The rational for development of this system was to improve upon the current models that lack key elements. This model places an emphasis on physiological relevance and ease of maintenance and reproducibility. The uniqueness of the model is based on integrating four critical elements: 1) a biofilm community composed of four distinct and representative species typically associated with dental caries, 2) a semi-defined synthetic growth medium designed to mimic saliva, 3) physiologically relevant biofilm growth substrates, and 4) a novel biofilm reactor device designed to facilitate the maintenance and analysis. Specifically, human tooth sections or hydroxyapatite discs embedded into poly(methyl methacrylate) (PMMA) discs are incubated for an initial 24 hr in a static inverted removable substrate (SIRS) biofilm reactor at 37°C under anaerobic conditions in artificial saliva (CAMM) without sucrose in the presence of 1 X 106 cells/ml of each Actinomyces odontolyticus, Fusobacterium nucleatum, Streptococcus mutans, and Veillonella dispar. During days 2 and 3 the samples are maintained continually in CAMM with various exposures to 0.2% sucrose; all of the discs are transferred into fresh medium every 24 hr. To validate that this model is an appropriate in vitro representation of a caries-associated multispecies biofilm, research aims were designed to test the following overarching hypothesis: an in vitro anaerobic biofilm composed of four species (S. mutans, V. dispar, A. odontolyticus, and F. nucleatum) will form a stable biofilm with a community profile that changes in response to environmental conditions and exhibits a cariogenic potential. For these experiments the biofilms as described above were exposed on days 2 and 3 to either CAMM lacking sucrose (no sucrose), CAMM with 0.2% sucrose (constant sucrose), or were transferred twice a day for 1 hr each time into 0.2% sucrose (intermittent sucrose). Four types of analysis were performed: 1) fluorescence microscopy of biofilms stained with Syto 9 and hexidium idodine to determine the biofilm architecture, 2) quantitative PCR (qPCR) to determine the cell number of each species per cm2, 3) vertical scanning interferometry (VSI) to determine the cariogenic potential of the biofilms, and 4) tomographic pH imaging using radiometric fluorescence microscopy after exposure to pH sensitive nanoparticles to measure the micro-environmental pH. The qualitative and quantitative results reveal the expected dynamics of the community profile when exposed to different sucrose conditions and the cariogenic potential of this in vitro four-species anaerobic biofilm model, thus confirming its usefulness for future analysis of primary and secondary dental caries.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphology, occlusal surface topography, macrowear, and microwear features of parrotfish pharyngeal teeth were investigated to relate microstructural characteristics to the function of the pharyngeal mill using scanning electron microscopy of whole and sectioned pharyngeal jaws and teeth. Pharyngeal tooth migration is anterior in the lower jaw (fifth ceratobranchial) and posterior in the upper jaw (paired third pharyngobranchials), making the interaction of occlusal surfaces and wear-generating forces complex. The extent of wear can be used to define three regions through which teeth migrate: a region containing newly erupted teeth showing little or no wear; a midregion in which the apical enameloid is swiftly worn; and a region containing teeth with only basal enameloid remaining, which shows low to moderate wear. The shape of the occlusal surface alters as the teeth progress along the pharyngeal jaw, generating conditions that appear suited to the reduction of coral particles. It is likely that the interaction between these particles and algal cells during the process of the rendering of the former is responsible for the rupture of the latter, with the consequent liberation of cell contents from which parrotfish obtain their nutrients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tooth enamel is the stiffest tissue in the human body with a well-organized microstructure. Developmental diseases, such as enamel hypomineralisation, have been reported to cause marked reduction in the elastic modulus of enamel and consequently impair dental function. We produce evidence, using site-specific transmission electron microscopy (TEM), of difference in microstructure between sound and hypomineralised enamel. Built upon that, we develop a mechanical model to explore the relationship of the elastic modulus of the mineral-protein composite structure of enamel with the thickness of protein layers and the direction of mechanical loading. We conclude that when subject to complex mechanical loading conditions, sound enamel exhibits consistently high stiffness, which is essential for dental function. A marked decrease in stiffness of hypomineralised enamel is caused primarily by an increase in the thickness of protein layers between apatite crystals and to a lesser extent by an increase in the effective crystal orientation angle. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To assess the effect of adding zinc oxide nanoparticles to dental adhesives on their anti-microbial and bond strength properties. Methods: 45 human premolars were cut at the cement enamel junction (CEJ) and the crowns were sliced into buccal and lingual halves. The specimens were classified into three groups, etched with 37% phosphoric acid for 15 s and rinsed for 30 s. Single Bond, Single Bond+5% zinc oxide and Single Bond+10% zinc oxide were used in the first, second and third groups. A cylinder of Z250 composite was bonded and cured for 40 s. For anti-bacterial testing, 10 samples of each group were assessed by direct contact test; 10 μL of bacterial suspension was transferred into tubes containing adhesives and incubated for one hour; 300 μL of brain heart infusion (BHI) broth was added to each tube and after 12 h, 50 μL of bacteria and broth were spread on blood agar plates and incubated for 24 h. Results: The colony count decreased significantly in the second and third groups compared to the first. Conclusions: Incorporation of zinc oxide nanoparticles into dental adhesives increases their anti-microbial properties without affecting their bond strength.