896 resultados para Defeasible Logic
Resumo:
A framework for the automatic parallelization of (constraint) logic programs is proposed and proved correct. Intuitively, the parallelization process replaces conjunctions of literals with parallel expressions. Such expressions trigger at run-time the exploitation of restricted, goal-level, independent and-parallelism. The parallelization process performs two steps. The first one builds a conditional dependency graph (which can be implified using compile-time analysis information), while the second transforms the resulting graph into linear conditional expressions, the parallel expressions of the &-Prolog language. Several heuristic algorithms for the latter ("annotation") process are proposed and proved correct. Algorithms are also given which determine if there is any loss of parallelism in the linearization process with respect to a proposed notion of maximal parallelism. Finally, a system is presented which implements the proposed approach. The performance of the different annotation algorithms is compared experimentally in this system by studying the time spent in parallelization and the effectiveness of the results in terms of speedups.
Resumo:
This paper illustrates the use of a top-down framework to obtain goal independent analyses of logic programs, a task which is usually associated with the bottom-up approach. While it is well known that the bottomup approach can be used, through the magic set transformation, for goal dependent analysis, it is less known that the top-down approach can be used for goal independent analysis. The paper describes two ways of doing the latter. We show how the results of a goal independent analysis can be used to speed up subsequent goal dependent analyses. However this speed-up may result in a loss of precisión. The influence of domain characteristics on this precisión is discussed and an experimental evaluation using a generic top-down analyzer is described.
Resumo:
Much work has been done in the áreas of and-parallelism and data parallelism in Logic Programs. Such work has proceeded to a certain extent in an independent fashion. Both types of parallelism offer advantages and disadvantages. Traditional (and-) parallel models offer generality, being able to exploit parallelism in a large class of programs (including that exploited by data parallelism techniques). Data parallelism techniques on the other hand offer increased performance for a restricted class of programs. The thesis of this paper is that these two forms of parallelism are not fundamentally different and that relating them opens the possibility of obtaining the advantages of both within the same system. Some relevant issues are discussed and solutions proposed. The discussion is illustrated through visualizations of actual parallel executions implementing the ideas proposed.
Resumo:
This paper presents some fundamental properties of independent and-parallelism and extends its applicability by enlarging the class of goals eligible for parallel execution. A simple model of (independent) and-parallel execution is proposed and issues of correctness and efficiency discussed in the light of this model. Two conditions, "strict" and "non-strict" independence, are defined and then proved sufficient to ensure correctness and efñciency of parallel execution: if goals which meet these conditions are executed in parallel the solutions obtained are the same as those produced by standard sequential execution. Also, in absence of failure, the parallel proof procedure does not genérate any additional work (with respect to standard SLD-resolution) while the actual execution time is reduced. Finally, in case of failure of any of the goals no slow down will occur. For strict independence the results are shown to hold independently of whether the parallel goals execute in the same environment or in sepárate environments. In addition, a formal basis is given for the automatic compile-time generation of independent and-parallelism: compile-time conditions to efficiently check goal independence at run-time are proposed and proved sufficient. Also, rules are given for constructing simpler conditions if information regarding the binding context of the goals to be executed in parallel is available to the compiler.
Resumo:
This paper proposes a diagnosis algorithm for locating a certain kind of errors in logic programs: variable binding errors that result in abstract symptoms during compile-time checking of assertions based on abstract interpretation. The diagnoser analyzes the graph generated by the abstract interpreter, which is a provably safe approximation of the program semantics. The proposed algorithm traverses this graph to find the point where the actual error originates (a reason of the symptom), leading to the point the error has been reported (the symptom). The procedure is fully automatic, not requiring any interaction with the user. A prototype diagnoser has been implemented and preliminary results are encouraging.
Resumo:
We present two new algorithms which perform automatic parallelization via source-to-source transformations. The objective is to exploit goal-level, unrestricted independent and-parallelism. The proposed algorithms use as targets new parallel execution primitives which are simpler and more flexible than the well-known &/2 parallel operator. This makes it possible to genérate better parallel expressions by exposing more potential parallelism among the literals of a clause than is possible with &/2. The difference between the two algorithms stems from whether the order of the solutions obtained is preserved or not. We also report on a preliminary evaluation of an implementation of our approach. We compare the performance obtained to that of previous annotation algorithms and show that relevant improvements can be obtained.
Resumo:
We present a static analysis that infers both upper and lower bounds on the usage that a logic program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The analysis then derives the related (upper- and lower-bound) resource usage functions for all predicates in the program. We also present an assertion language which is used to define both such resources and resourcerelated properties that the system can then check based on the results of the analysis. We have performed some preliminary experiments with some concrete resources such as execution steps, bytes sent or received by an application, number of files left open, number of accesses to a datábase, number of calis to a procedure, number of asserts/retracts, etc. Applications of our analysis include resource consumption verification and debugging (including for mobile code), resource control in parallel/distributed computing, and resource-oriented specialization.
Resumo:
Predicting statically the running time of programs has many applications ranging from task scheduling in parallel execution to proving the ability of a program to meet strict time constraints. A starting point in order to attack this problem is to infer the computational complexity of such programs (or fragments thereof). This is one of the reasons why the development of static analysis techniques for inferring cost-related properties of programs (usually upper and/or lower bounds of actual costs) has received considerable attention.
Resumo:
We propose an analysis for detecting procedures and goals that are deterministic (i.e. that produce at most one solution), or predicates whose clause tests are mutually exclusive (which implies that at most one of their clauses will succeed) even if they are not deterministic (because they cali other predicates that can produce more than one solution). Applications of such determinacy information include detecting programming errors, performing certain high-level program transformations for improving search efñciency, optimizing low level code generation and parallel execution, and estimating tighter upper bounds on the computational costs of goals and data sizes, which can be used for program debugging, resource consumption and granularity control, etc. We have implemented the analysis and integrated it in the CiaoPP system, which also infers automatically the mode and type information that our analysis takes as input. Experiments performed on this implementation show that the analysis is fairly accurate and efncient.
Resumo:
A new formalism, called Hiord, for defining type-free higherorder logic programming languages with predicate abstraction is introduced. A model theory, based on partial combinatory algebras, is presented, with respect to which the formalism is shown sound. A programming language built on a subset of Hiord, and its implementation are discussed. A new proposal for defining modules in this framework is considered, along with several examples.
Resumo:
We propose a general framework for assertion-based debugging of constraint logic programs. Assertions are linguistic constructions for expressing properties of programs. We define several assertion schemas for writing (partial) specifications for constraint logic programs using quite general properties, including user-defined programs. The framework is aimed at detecting deviations of the program behavior (symptoms) with respect to the given assertions, either at compile-time (i.e., statically) or run-time (i.e., dynamically). We provide techniques for using information from global analysis both to detect at compile-time assertions which do not hold in at least one of the possible executions (i.e., static symptoms) and assertions which hold for all possible executions (i.e., statically proved assertions). We also provide program transformations which introduce tests in the program for checking at run-time those assertions whose status cannot be determined at compile-time. Both the static and the dynamic checking are provably safe in the sense that all errors flagged are definite violations of the pecifications. Finally, we report briefly on the currently implemented instances of the generic framework.
Resumo:
We propose a general framework for assertion-based debugging of constraint logic programs. Assertions are linguistic constructions which allow expressing properties of programs. We define assertion schemas which allow writing (partial) specifications for constraint logic programs using quite general properties, including user-defined programs. The framework is aimed at detecting deviations of the program behavior (symptoms) with respect to the given assertions, either at compile-time or run-time. We provide techniques for using information from global analysis both to detect at compile-time assertions which do not hold in at least one of the possible executions (i.e., static symptoms) and assertions which hold for all possible executions (i.e., statically proved assertions). We also provide program transformations which introduce tests in the program for checking at run-time those assertions whose status cannot be determined at compile-time. Both the static and the dynamic checking are provably safe in the sense that all errors flagged are definite violations of the specifications. Finally, we report on an implemented instance of the assertion language and framework.
Resumo:
It is generally recognized that information about the runtime cost of computations can be useful for a variety of applications, including program transformation, granularity control during parallel execution, and query optimization in deductive databases. Most of the work to date on compile-time cost estimation of logic programs has focused on the estimation of upper bounds on costs. However, in many applications, such as parallel implementations on distributed-memory machines, one would prefer to work with lower bounds instead. The problem with estimating lower bounds is that in general, it is necessary to account for the possibility of failure of head unification, leading to a trivial lower bound of 0. In this paper, we show how, given type and mode information about procedures in a logic program, it is possible to (semi-automatically) derive nontrivial lower bounds on their computational costs. We also discuss the cost analysis for the special and frequent case of divide-and-conquer programs and show how —as a pragmatic short-term solution —it may be possible to obtain useful results simply by identifying and treating divide-and-conquer programs specially.
Resumo:
We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.
Resumo:
Global analysis of logic programs can be performed effectively by the use of one of several existing efficient algorithms. However, the traditional global analysis scheme in which all the program code is known in advance and no previous analysis information is available is unsatisfactory in many situations. Incrementa! analysis of logic programs has been shown to be feasible and much more efficient in certain contexts than traditional (non-incremental) global analysis. However, incremental analysis poses additional requirements on the fixpoint algorithm used. In this work we identify these requirements, present an important class of strategies meeting the requirements, present sufficient a priori conditions for such strategies, and propose, implement, and evalúate experimentally a novel algorithm for incremental analysis based on these ideas. The experimental results show that the proposed algorithm performs very efficiently in the incremental case while being comparable to (and, in some cases, considerably better than) other state-of-the-art analysis algorithms even for the non-incremental case. We argüe that our discussions, results, and experiments also shed light on some of the many tradeoffs involved in the design of algorithms for logic program analysis.