820 resultados para Data-Mining Techniques
USO DE TEORIAS NO CAMPO DE SISTEMAS DE INFORMAÇÃO: MAPEAMENTO USANDO TÉCNICAS DE MINERAÇÃO DE TEXTOS
Resumo:
Esta dissertação visa apresentar o mapeamento do uso das teorias de sistemas de informações, usando técnicas de recuperação de informação e metodologias de mineração de dados e textos. As teorias abordadas foram Economia de Custos de Transações (Transactions Costs Economics TCE), Visão Baseada em Recursos da Firma (Resource-Based View-RBV) e Teoria Institucional (Institutional Theory-IT), sendo escolhidas por serem teorias de grande relevância para estudos de alocação de investimentos e implementação em sistemas de informação, tendo como base de dados o conteúdo textual (em inglês) do resumo e da revisão teórica dos artigos dos periódicos Information System Research (ISR), Management Information Systems Quarterly (MISQ) e Journal of Management Information Systems (JMIS) no período de 2000 a 2008. Os resultados advindos da técnica de mineração textual aliada à mineração de dados foram comparadas com a ferramenta de busca avançada EBSCO e demonstraram uma eficiência maior na identificação de conteúdo. Os artigos fundamentados nas três teorias representaram 10% do total de artigos dos três períodicos e o período mais profícuo de publicação foi o de 2001 e 2007.(AU)
Resumo:
© The Author(s) 2014. Acknowledgements We thank the Information Services Division, Scotland, who provided the SMR01 data, and NHS Grampian, who provided the biochemistry data. We also thank the University of Aberdeen’s Data Management Team. Funding This work was supported by the Chief Scientists Office for Scotland (grant no. CZH/4/656).
Resumo:
Em virtude de uma elevada expectativa de vida mundial, faz-se crescente a probabilidade de ocorrer acidentes naturais e traumas físicos no cotidiano, o que ocasiona um aumento na demanda por reabilitação. A terapia física, sob o paradigma da reabilitação robótica com serious games, oferece maior motivação e engajamento do paciente ao tratamento, cujo emprego foi recomendado pela American Heart Association (AHA), apontando a mais alta avaliação (Level A) para pacientes internados e ambulatoriais. No entanto, o potencial de análise dos dados coletados pelos dispositivos robóticos envolvidos é pouco explorado, deixando de extrair informações que podem ser de grande valia para os tratamentos. O foco deste trabalho consiste na aplicação de técnicas para descoberta de conhecimento, classificando o desempenho de pacientes diagnosticados com hemiparesia crônica. Os pacientes foram inseridos em um ambiente de reabilitação robótica, fazendo uso do InMotion ARM, um dispositivo robótico para reabilitação de membros superiores e coleta dos dados de desempenho. Foi aplicado sobre os dados um roteiro para descoberta de conhecimento em bases de dados, desempenhando pré-processamento, transformação (extração de características) e então a mineração de dados a partir de algoritmos de aprendizado de máquina. A estratégia do presente trabalho culminou em uma classificação de padrões com a capacidade de distinguir lados hemiparéticos sob uma precisão de 94%, havendo oito atributos alimentando a entrada do mecanismo obtido. Interpretando esta coleção de atributos, foi observado que dados de força são mais significativos, os quais abrangem metade da composição de uma amostra.
Resumo:
Devido às tendências de crescimento da quantidade de dados processados e a crescente necessidade por computação de alto desempenho, mudanças significativas estão acontecendo no projeto de arquiteturas de computadores. Com isso, tem-se migrado do paradigma sequencial para o paralelo, com centenas ou milhares de núcleos de processamento em um mesmo chip. Dentro desse contexto, o gerenciamento de energia torna-se cada vez mais importante, principalmente em sistemas embarcados, que geralmente são alimentados por baterias. De acordo com a Lei de Moore, o desempenho de um processador dobra a cada 18 meses, porém a capacidade das baterias dobra somente a cada 10 anos. Esta situação provoca uma enorme lacuna, que pode ser amenizada com a utilização de arquiteturas multi-cores heterogêneas. Um desafio fundamental que permanece em aberto para estas arquiteturas é realizar a integração entre desenvolvimento de código embarcado, escalonamento e hardware para gerenciamento de energia. O objetivo geral deste trabalho de doutorado é investigar técnicas para otimização da relação desempenho/consumo de energia em arquiteturas multi-cores heterogêneas single-ISA implementadas em FPGA. Nesse sentido, buscou-se por soluções que obtivessem o melhor desempenho possível a um consumo de energia ótimo. Isto foi feito por meio da combinação de mineração de dados para a análise de softwares baseados em threads aliadas às técnicas tradicionais para gerenciamento de energia, como way-shutdown dinâmico, e uma nova política de escalonamento heterogeneity-aware. Como principais contribuições pode-se citar a combinação de técnicas de gerenciamento de energia em diversos níveis como o nível do hardware, do escalonamento e da compilação; e uma política de escalonamento integrada com uma arquitetura multi-core heterogênea em relação ao tamanho da memória cache L1.
Resumo:
El campo de procesamiento de lenguaje natural (PLN), ha tenido un gran crecimiento en los últimos años; sus áreas de investigación incluyen: recuperación y extracción de información, minería de datos, traducción automática, sistemas de búsquedas de respuestas, generación de resúmenes automáticos, análisis de sentimientos, entre otras. En este artículo se presentan conceptos y algunas herramientas con el fin de contribuir al entendimiento del procesamiento de texto con técnicas de PLN, con el propósito de extraer información relevante que pueda ser usada en un gran rango de aplicaciones. Se pueden desarrollar clasificadores automáticos que permitan categorizar documentos y recomendar etiquetas; estos clasificadores deben ser independientes de la plataforma, fácilmente personalizables para poder ser integrados en diferentes proyectos y que sean capaces de aprender a partir de ejemplos. En el presente artículo se introducen estos algoritmos de clasificación, se analizan algunas herramientas de código abierto disponibles actualmente para llevar a cabo estas tareas y se comparan diversas implementaciones utilizando la métrica F en la evaluación de los clasificadores.
Resumo:
The environmental, cultural and socio-economic causes and consequences of farmland abandonment are issues of increasing concern for researchers and policy makers. In previous studies, we proposed a new methodology for selecting the driving factors in farmland abandonment processes. Using Data Mining and GIS, it is possible to select those variables which are more significantly related to abandonment. The aim of this study is to investigate the application of the above mentioned methodology for finding relationships between relief and farmland abandonment in a Mediterranean region (SE Spain).We have taken into account up to 28 different variables in a single analysis, some of them commonly considered in land use change studies (slope, altitude, TWI, etc), but also other novel variables have been evaluated (sky view factor, terrain view factor, etc). The variable selection process provides results in line with the previous knowledge of the study area, describing some processes that are region specific (e.g. abandonment versus intensification of the agricultural activities). The European INSPIRE Directive (2007/2/EC) establishes that the digital elevation models for land surfaces should be available in all member countries, this means that the research described in this work can be extrapolated to any European country to determine whether these variables (slope, altitude, etc) are important in the process of abandonment.
Resumo:
Research in conditioning (all the processes of preparation for competition) has used group research designs, where multiple athletes are observed at one or more points in time. However, empirical reports of large inter-individual differences in response to conditioning regimens suggest that applied conditioning research would greatly benefit from single-subject research designs. Single-subject research designs allow us to find out the extent to which a specific conditioning regimen works for a specific athlete, as opposed to the average athlete, who is the focal point of group research designs. The aim of the following review is to outline the strategies and procedures of single-subject research as they pertain to.. the assessment of conditioning for individual athletes. The four main experimental designs in single-subject research are: the AB design, reversal (withdrawal) designs and their extensions, multiple baseline designs and alternating treatment designs. Visual and statistical analyses commonly used to analyse single-subject data, and advantages and limitations are discussed. Modelling of multivariate single-subject data using techniques such as dynamic factor analysis and structural equation modelling may identify individualised models of conditioning leading to better prediction of performance. Despite problems associated with data analyses in single-subject research (e.g. serial dependency), sports scientists should use single-subject research designs in applied conditioning research to understand how well an intervention (e.g. a training method) works and to predict performance for a particular athlete.
Resumo:
The design, development, and use of complex systems models raises a unique class of challenges and potential pitfalls, many of which are commonly recurring problems. Over time, researchers gain experience in this form of modeling, choosing algorithms, techniques, and frameworks that improve the quality, confidence level, and speed of development of their models. This increasing collective experience of complex systems modellers is a resource that should be captured. Fields such as software engineering and architecture have benefited from the development of generic solutions to recurring problems, called patterns. Using pattern development techniques from these fields, insights from communities such as learning and information processing, data mining, bioinformatics, and agent-based modeling can be identified and captured. Collections of such 'pattern languages' would allow knowledge gained through experience to be readily accessible to less-experienced practitioners and to other domains. This paper proposes a methodology for capturing the wisdom of computational modelers by introducing example visualization patterns, and a pattern classification system for analyzing the relationship between micro and macro behaviour in complex systems models. We anticipate that a new field of complex systems patterns will provide an invaluable resource for both practicing and future generations of modelers.
Resumo:
There has been an increased demand for characterizing user access patterns using web mining techniques since the informative knowledge extracted from web server log files can not only offer benefits for web site structure improvement but also for better understanding of user navigational behavior. In this paper, we present a web usage mining method, which utilize web user usage and page linkage information to capture user access pattern based on Probabilistic Latent Semantic Analysis (PLSA) model. A specific probabilistic model analysis algorithm, EM algorithm, is applied to the integrated usage data to infer the latent semantic factors as well as generate user session clusters for revealing user access patterns. Experiments have been conducted on real world data set to validate the effectiveness of the proposed approach. The results have shown that the presented method is capable of characterizing the latent semantic factors and generating user profile in terms of weighted page vectors, which may reflect the common access interest exhibited by users among same session cluster.
USO DE TEORIAS NO CAMPO DE SISTEMAS DE INFORMAÇÃO: MAPEAMENTO USANDO TÉCNICAS DE MINERAÇÃO DE TEXTOS
Resumo:
Esta dissertação visa apresentar o mapeamento do uso das teorias de sistemas de informações, usando técnicas de recuperação de informação e metodologias de mineração de dados e textos. As teorias abordadas foram Economia de Custos de Transações (Transactions Costs Economics TCE), Visão Baseada em Recursos da Firma (Resource-Based View-RBV) e Teoria Institucional (Institutional Theory-IT), sendo escolhidas por serem teorias de grande relevância para estudos de alocação de investimentos e implementação em sistemas de informação, tendo como base de dados o conteúdo textual (em inglês) do resumo e da revisão teórica dos artigos dos periódicos Information System Research (ISR), Management Information Systems Quarterly (MISQ) e Journal of Management Information Systems (JMIS) no período de 2000 a 2008. Os resultados advindos da técnica de mineração textual aliada à mineração de dados foram comparadas com a ferramenta de busca avançada EBSCO e demonstraram uma eficiência maior na identificação de conteúdo. Os artigos fundamentados nas três teorias representaram 10% do total de artigos dos três períodicos e o período mais profícuo de publicação foi o de 2001 e 2007.(AU)
Resumo:
Hierarchical visualization systems are desirable because a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex high-dimensional data sets. We extend an existing locally linear hierarchical visualization system PhiVis [1] in several directions: bf(1) we allow for em non-linear projection manifolds (the basic building block is the Generative Topographic Mapping -- GTM), bf(2) we introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree, bf(3) we describe folding patterns of low-dimensional projection manifold in high-dimensional data space by computing and visualizing the manifold's local directional curvatures. Quantities such as magnification factors [3] and directional curvatures are helpful for understanding the layout of the nonlinear projection manifold in the data space and for further refinement of the hierarchical visualization plot. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. We demonstrate the visualization system principle of the approach on a complex 12-dimensional data set and mention possible applications in the pharmaceutical industry.
Resumo:
In this paper, a co-operative distributed process mining system (CDPMS) is developed to streamline the workflow along the supply chain in order to offer shorter delivery times, more flexibility and higher customer satisfaction with learning ability. The proposed system is equipped with the ‘distributed process mining’ feature which is used to discover the hidden relationships among each working decision in distributed manner. This method incorporates the concept of data mining and knowledge refinement into decision making process for ensuring ‘doing the right things’ within the workflow. An example of implementation is given, based on the case of slider manufacturer.
Resumo:
Most current 3D landscape visualisation systems either use bespoke hardware solutions, or offer a limited amount of interaction and detail when used in realtime mode. We are developing a modular, data driven 3D visualisation system that can be readily customised to specific requirements. By utilising the latest software engineering methods and bringing a dynamic data driven approach to geo-spatial data visualisation we will deliver an unparalleled level of customisation in near-photo realistic, realtime 3D landscape visualisation. In this paper we show the system framework and describe how this employs data driven techniques. In particular we discuss how data driven approaches are applied to the spatiotemporal management aspect of the application framework, and describe the advantages these convey.
Resumo:
Retrospective clinical data presents many challenges for data mining and machine learning. The transcription of patient records from paper charts and subsequent manipulation of data often results in high volumes of noise as well as a loss of other important information. In addition, such datasets often fail to represent expert medical knowledge and reasoning in any explicit manner. In this research we describe applying data mining methods to retrospective clinical data to build a prediction model for asthma exacerbation severity for pediatric patients in the emergency department. Difficulties in building such a model forced us to investigate alternative strategies for analyzing and processing retrospective data. This paper describes this process together with an approach to mining retrospective clinical data by incorporating formalized external expert knowledge (secondary knowledge sources) into the classification task. This knowledge is used to partition the data into a number of coherent sets, where each set is explicitly described in terms of the secondary knowledge source. Instances from each set are then classified in a manner appropriate for the characteristics of the particular set. We present our methodology and outline a set of experiential results that demonstrate some advantages and some limitations of our approach. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
This thesis introduces a flexible visual data exploration framework which combines advanced projection algorithms from the machine learning domain with visual representation techniques developed in the information visualisation domain to help a user to explore and understand effectively large multi-dimensional datasets. The advantage of such a framework to other techniques currently available to the domain experts is that the user is directly involved in the data mining process and advanced machine learning algorithms are employed for better projection. A hierarchical visualisation model guided by a domain expert allows them to obtain an informed segmentation of the input space. Two other components of this thesis exploit properties of these principled probabilistic projection algorithms to develop a guided mixture of local experts algorithm which provides robust prediction and a model to estimate feature saliency simultaneously with the training of a projection algorithm.Local models are useful since a single global model cannot capture the full variability of a heterogeneous data space such as the chemical space. Probabilistic hierarchical visualisation techniques provide an effective soft segmentation of an input space by a visualisation hierarchy whose leaf nodes represent different regions of the input space. We use this soft segmentation to develop a guided mixture of local experts (GME) algorithm which is appropriate for the heterogeneous datasets found in chemoinformatics problems. Moreover, in this approach the domain experts are more involved in the model development process which is suitable for an intuition and domain knowledge driven task such as drug discovery. We also derive a generative topographic mapping (GTM) based data visualisation approach which estimates feature saliency simultaneously with the training of a visualisation model.