775 resultados para Data Mining, Rough Sets, Multi-Dimension, Association Rules, Constraint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantile computation has many applications including data mining and financial data analysis. It has been shown that an is an element of-approximate summary can be maintained so that, given a quantile query d (phi, is an element of), the data item at rank [phi N] may be approximately obtained within the rank error precision is an element of N over all N data items in a data stream or in a sliding window. However, scalable online processing of massive continuous quantile queries with different phi and is an element of poses a new challenge because the summary is continuously updated with new arrivals of data items. In this paper, first we aim to dramatically reduce the number of distinct query results by grouping a set of different queries into a cluster so that they can be processed virtually as a single query while the precision requirements from users can be retained. Second, we aim to minimize the total query processing costs. Efficient algorithms are developed to minimize the total number of times for reprocessing clusters and to produce the minimum number of clusters, respectively. The techniques are extended to maintain near-optimal clustering when queries are registered and removed in an arbitrary fashion against whole data streams or sliding windows. In addition to theoretical analysis, our performance study indicates that the proposed techniques are indeed scalable with respect to the number of input queries as well as the number of items and the item arrival rate in a data stream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. In this paper, we investigate the problem of evaluating the top k distinguished “features” for a “cluster” based on weighted proximity relationships between the cluster and features. We measure proximity in an average fashion to address possible nonuniform data distribution in a cluster. Combining a standard multi-step paradigm with new lower and upper proximity bounds, we presented an efficient algorithm to solve the problem. The algorithm is implemented in several different modes. Our experiment results not only give a comparison among them but also illustrate the efficiency of the algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – Academic writing is often considered to be a weakness in contemporary students, while good reporting and writing skills are highly valued by graduate employers. A number of universities have introduced writing centres aimed at addressing this problem; however, the evaluation of such centres is usually qualitative. The paper seeks to consider the efficacy of a writing centre by looking at the impact of attendance on two “real world” quantitative outcomes – achievement and progression. Design/methodology/approach – Data mining was used to obtain records of 806 first-year students, of whom 45 had attended the writing centre and 761 had not. Findings – A highly significant association between writing centre attendance and achievement was found. Progression to year two was also significantly associated with writing centre attendance. Originality/value – Further, quantitative evaluation of writing centres is advocated using random allocation to a comparison condition to control for potential confounds such as motivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a co-operative distributed process mining system (CDPMS) is developed to streamline the workflow along the supply chain in order to offer shorter delivery times, more flexibility and higher customer satisfaction with learning ability. The proposed system is equipped with the ‘distributed process mining’ feature which is used to discover the hidden relationships among each working decision in distributed manner. This method incorporates the concept of data mining and knowledge refinement into decision making process for ensuring ‘doing the right things’ within the workflow. An example of implementation is given, based on the case of slider manufacturer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When applying multivariate analysis techniques in information systems and social science disciplines, such as management information systems (MIS) and marketing, the assumption that the empirical data originate from a single homogeneous population is often unrealistic. When applying a causal modeling approach, such as partial least squares (PLS) path modeling, segmentation is a key issue in coping with the problem of heterogeneity in estimated cause-and-effect relationships. This chapter presents a new PLS path modeling approach which classifies units on the basis of the heterogeneity of the estimates in the inner model. If unobserved heterogeneity significantly affects the estimated path model relationships on the aggregate data level, the methodology will allow homogenous groups of observations to be created that exhibit distinctive path model estimates. The approach will, thus, provide differentiated analytical outcomes that permit more precise interpretations of each segment formed. An application on a large data set in an example of the American customer satisfaction index (ACSI) substantiates the methodology’s effectiveness in evaluating PLS path modeling results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis introduces a flexible visual data exploration framework which combines advanced projection algorithms from the machine learning domain with visual representation techniques developed in the information visualisation domain to help a user to explore and understand effectively large multi-dimensional datasets. The advantage of such a framework to other techniques currently available to the domain experts is that the user is directly involved in the data mining process and advanced machine learning algorithms are employed for better projection. A hierarchical visualisation model guided by a domain expert allows them to obtain an informed segmentation of the input space. Two other components of this thesis exploit properties of these principled probabilistic projection algorithms to develop a guided mixture of local experts algorithm which provides robust prediction and a model to estimate feature saliency simultaneously with the training of a projection algorithm.Local models are useful since a single global model cannot capture the full variability of a heterogeneous data space such as the chemical space. Probabilistic hierarchical visualisation techniques provide an effective soft segmentation of an input space by a visualisation hierarchy whose leaf nodes represent different regions of the input space. We use this soft segmentation to develop a guided mixture of local experts (GME) algorithm which is appropriate for the heterogeneous datasets found in chemoinformatics problems. Moreover, in this approach the domain experts are more involved in the model development process which is suitable for an intuition and domain knowledge driven task such as drug discovery. We also derive a generative topographic mapping (GTM) based data visualisation approach which estimates feature saliency simultaneously with the training of a visualisation model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topic of this thesis is the development of knowledge based statistical software. The shortcomings of conventional statistical packages are discussed to illustrate the need to develop software which is able to exhibit a greater degree of statistical expertise, thereby reducing the misuse of statistical methods by those not well versed in the art of statistical analysis. Some of the issues involved in the development of knowledge based software are presented and a review is given of some of the systems that have been developed so far. The majority of these have moved away from conventional architectures by adopting what can be termed an expert systems approach. The thesis then proposes an approach which is based upon the concept of semantic modelling. By representing some of the semantic meaning of data, it is conceived that a system could examine a request to apply a statistical technique and check if the use of the chosen technique was semantically sound, i.e. will the results obtained be meaningful. Current systems, in contrast, can only perform what can be considered as syntactic checks. The prototype system that has been implemented to explore the feasibility of such an approach is presented, the system has been designed as an enhanced variant of a conventional style statistical package. This involved developing a semantic data model to represent some of the statistically relevant knowledge about data and identifying sets of requirements that should be met for the application of the statistical techniques to be valid. Those areas of statistics covered in the prototype are measures of association and tests of location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the important bioinformatics problem of predicting protein function from a protein's primary sequence. We consider the functional classification of G-Protein-Coupled Receptors (GPCRs), whose functions are specified in a class hierarchy. We tackle this task using a novel top-down hierarchical classification system where, for each node in the class hierarchy, the predictor attributes to be used in that node and the classifier to be applied to the selected attributes are chosen in a data-driven manner. Compared with a previous hierarchical classification system selecting classifiers only, our new system significantly reduced processing time without significantly sacrificing predictive accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biggest threat to any business is a lack of timely and accurate information. Without all the facts, businesses are pressured to make critical decisions and assess risks and opportunities based largely on guesswork, sometimes resulting in financial losses and missed opportunities. The meteoric rise of Databases (DB) appears to confirm the adage that “information is power”, but the stark reality is that information is useless if one has no way to find what one needs to know. It is more accurate perhaps to state that, “the ability to find information is power”. In this paper we show how Instantaneous Database Access System (IDAS) can make a crucial difference by pulling data together and allowing users to summarise information quickly from all areas of a business organisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method (algorithm BIDIMS) of multivariate objects display to bidimensional structure in which the sum of differences of objects properties and their nearest neighbors is minimal is being described. The basic regularities on the set of objects at this ordering become evident. Besides, such structures (tables) have high inductive opportunities: many latent properties of objects may be predicted on their coordinates in this table. Opportunities of a method are illustrated on an example of bidimentional ordering of chemical elements. The table received in result practically coincides with the periodic Mendeleev table.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of knowledge is the central one used when solving the various problems of data mining and pattern recognition in finite spaces of Boolean or multi-valued attributes. A special form of knowledge representation, called implicative regularities, is proposed for applying in two powerful tools of modern logic: the inductive inference and the deductive inference. The first one is used for extracting the knowledge from the data. The second is applied when the knowledge is used for calculation of the goal attribute values. A set of efficient algorithms was developed for that, dealing with Boolean functions and finite predicates represented by logical vectors and matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper introduces a method for dependencies discovery during human-machine interaction. It is based on an analysis of numerical data sets in knowledge-poor environments. The driven procedures are independent and they interact on a competitive principle. The research focuses on seven of them. The application is in Number Theory.