964 resultados para Data Migration Processes Modeling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Back-pressure on a diesel engine equipped with an aftertreatment system is a function of the pressure drop across the individual components of the aftertreatment system, typically, a diesel oxidation catalyst (DOC), catalyzed particulate filter (CPF) and selective catalytic reduction (SCR) catalyst. Pressure drop across the CPF is a function of the mass flow rate and the temperature of the exhaust flowing through it as well as the mass of particulate matter (PM) retained in the substrate wall and the cake layer that forms on the substrate wall. Therefore, in order to control the back-pressure on the engine at low levels and to minimize the fuel consumption, it is important to control the PM mass retained in the CPF. Chemical reactions involving the oxidation of PM under passive oxidation and active regeneration conditions can be utilized with computer numerical models in the engine control unit (ECU) to control the pressure drop across the CPF. Hence, understanding and predicting the filtration and oxidation of PM in the CPF and the effect of these processes on the pressure drop across the CPF are necessary for developing control strategies for the aftertreatment system to reduce back-pressure on the engine and in turn fuel consumption particularly from active regeneration. Numerical modeling of CPF's has been proven to reduce development time and the cost of aftertreatment systems used in production as well as to facilitate understanding of the internal processes occurring during different operating conditions that the particulate filter is subjected to. A numerical model of the CPF was developed in this research work which was calibrated to data from passive oxidation and active regeneration experiments in order to determine the kinetic parameters for oxidation of PM and nitrogen oxides along with the model filtration parameters. The research results include the comparison between the model and the experimental data for pressure drop, PM mass retained, filtration efficiencies, CPF outlet gas temperatures and species (NO2) concentrations out of the CPF. Comparisons of PM oxidation reaction rates obtained from the model calibration to the data from the experiments for ULSD, 10 and 20% biodiesel-blended fuels are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of volcano deformation data can provide information on magma processes and help assess the potential for future eruptions. In employing inverse deformation modeling on these data, we attempt to characterize the geometry, location and volume/pressure change of a deformation source. Techniques currently used to model sheet intrusions (e.g., dikes and sills) often require significant a priori assumptions about source geometry and can require testing a large number of parameters. Moreover, surface deformations are a non-linear function of the source geometry and location. This requires the use of Monte Carlo inversion techniques which leads to long computation times. Recently, ‘displacement tomography’ models have been used to characterize magma reservoirs by inverting source deformation data for volume changes using a grid of point sources in the subsurface. The computations involved in these models are less intensive as no assumptions are made on the source geometry and location, and the relationship between the point sources and the surface deformation is linear. In this project, seeking a less computationally intensive technique for fracture sources, we tested if this displacement tomography method for reservoirs could be used for sheet intrusions. We began by simulating the opening of three synthetic dikes of known geometry and location using an established deformation model for fracture sources. We then sought to reproduce the displacements and volume changes undergone by the fractures using the sources employed in the tomography methodology. Results of this validation indicate the volumetric point sources are not appropriate for locating fracture sources, however they may provide useful qualitative information on volume changes occurring in the surrounding rock, and therefore indirectly indicate the source location.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. Steroid hormones, such as estrogen, and growth factors, which include insulin growth factor I/II (IGF-1/IGF-2) therapy has been associated with most if not all of the features of metastasis. It has been determined that IGF-1 increases cell survival of cancer cells and potentiate the effect of E2 and other ligand growth factors on breast cancer cells. However not much information is available that comprehensively expounds on the roles of insulin growth factor receptor (IGFR) and Rab GTPases may play in breast cancer. The latter, Rab GTPases, are small signaling molecules and critical in the regulation of many cellular processes including cell migration, growth via the endocytic pathway. This research involves the role of Rab GTPases, specifically Rab5 and its guanine exchange factors (GEFs), in the promotion of cancer cell migration and invasion. Two important questions abound: Are IGFR stimulation and downstream effect involved the endocytic pathway in carcinogenesis? What role does Rab5 play in cell migration and invasion of cancer cells? The hypothesis is that growth factor signaling is dependent on Rab5 activity in mediating the aggressiveness of cancer cells. The goal is to demonstrate that IGF-1 signaling is dependent on Rab5 function in breast cancer progression. Here, the results thus far, have shown that while activation of Rab5 may mediate increased cell proliferation, migration and invasion in breast cancer cells, the Rab5 GEF, RIN1 interacts with the IGFR thereby facilitating migration and invasion activities in breast cells. Furthermore, endocytosis of the IGFR in breast cancer cells seems to be caveolin dependent as the data has shown. This taken together, the data shows that IGF-1 signaling in breast cancer cells relies on IGF-1R phosphorylation, caveolae internalization and sequestration to the early endosome RIN1 function and Rab5 activation.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructure of 6XXX aluminum alloys deeply affects mechanical, crash, corrosion and aesthetic properties of extruded profiles. Unfortunately, grain structure evolution during manufacturing processes is a complex phenomenon because several process and material parameters such as alloy chemical composition, temperature, extrusion speed, tools geometries, quenching and thermal treatment parameters affect the grain evolution during the manufacturing process. The aim of the present PhD thesis was the analysis of the recrystallization kinetics during the hot extrusion of 6XXX aluminum alloys and the development of reliable recrystallization models to be used in FEM codes for the microstructure prediction at a die design stage. Experimental activities have been carried out in order to acquire data for the recrystallization models development, validation and also to investigate the effect of process parameters and die design on the microstructure of the final component. The experimental campaign reported in this thesis involved the extrusion of AA6063, AA6060 and AA6082 profiles with different process parameters in order to provide a reliable amount of data for the models validation. A particular focus was made to investigate the PCG defect evolution during the extrusion of medium-strength alloys such as AA6082. Several die designs and process conditions were analysed in order to understand the influence of each of them on the recrystallization behaviour of the investigated alloy. From the numerical point of view, innovative models for the microstructure prediction were developed and validated over the extrusion of industrial-scale profiles with complex geometries, showing a good matching in terms of the grain size and surface recrystallization prediction. The achieved results suggest the reliability of the developed models and their application in the industrial field for process and material properties optimization at a die-design stage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Brain functioning relies on the interaction of several neural populations connected through complex connectivity networks, enabling the transmission and integration of information. Recent advances in neuroimaging techniques, such as electroencephalography (EEG), have deepened our understanding of the reciprocal roles played by brain regions during cognitive processes. The underlying idea of this PhD research is that EEG-related functional connectivity (FC) changes in the brain may incorporate important neuromarkers of behavior and cognition, as well as brain disorders, even at subclinical levels. However, a complete understanding of the reliability of the wide range of existing connectivity estimation techniques is still lacking. The first part of this work addresses this limitation by employing Neural Mass Models (NMMs), which simulate EEG activity and offer a unique tool to study interconnected networks of brain regions in controlled conditions. NMMs were employed to test FC estimators like Transfer Entropy and Granger Causality in linear and nonlinear conditions. Results revealed that connectivity estimates reflect information transmission between brain regions, a quantity that can be significantly different from the connectivity strength, and that Granger causality outperforms the other estimators. A second objective of this thesis was to assess brain connectivity and network changes on EEG data reconstructed at the cortical level. Functional brain connectivity has been estimated through Granger Causality, in both temporal and spectral domains, with the following goals: a) detect task-dependent functional connectivity network changes, focusing on internal-external attention competition and fear conditioning and reversal; b) identify resting-state network alterations in a subclinical population with high autistic traits. Connectivity-based neuromarkers, compared to the canonical EEG analysis, can provide deeper insights into brain mechanisms and may drive future diagnostic methods and therapeutic interventions. However, further methodological studies are required to fully understand the accuracy and information captured by FC estimates, especially concerning nonlinear phenomena.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the turn of the century, fisheries have maintained a steady growth rate, while aquaculture has experienced a more rapid expansion. Aquaculture can offer EU consumers more diverse, healthy, and sustainable food options, some of which are more popular elsewhere. To develop the sector, the EU is investing heavily. The EU supports innovative projects that promote the sustainable development of seafood sectors and food security. Priority 3 promotes sector development through innovation dissemination. This doctoral dissertation examined innovation transfer in the Italian aquaculture sector, specifically the adoption of innovative tools, using a theoretical model to better understand the complexity of these processes. The work focused on innovation adoption, emphasising that it is the end of a well-defined process. The Awareness Knowledge Adoption Implementation Effectiveness (AKAIE) model was created to better analyse post-adoption phases and evaluate technology adoption implementation and impact. To identify AKAIE drivers and barriers, aquaculture actors were consulted. "Perceived complexity"—barriers to adoption that are strongly influenced by contextual factors—has been used to examine their perspectives (i.e. socio-economic, institutional, cultural ones). The new model will contextualise the sequence based on technologies, entrepreneur traits, corporate and institutional contexts, and complexity perception, the sequence's central node. Technology adoption can also be studied by examining complexity perceptions along the AKAIE sequence. This study proposes a new model to evaluate the diffusion of a given technology, offering the policy maker the possibility to be able to act promptly across the process. The development of responsible policies for evaluating the effectiveness of innovation is more necessary than ever, especially to orient strategies and interventions in the face of major scenarios of change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dissertation explores the intersections between the temporalities of migration management and border-crossers’ temporalities. First, I analyze the relation between acceleration and (non)knowledge production by focusing on the “accelerated procedures” for asylum. These procedures are applied to people whose asylum applications are deemed as suspicious and likely to be rejected. I argue that the shortened timeframes shaping these procedures are a tool for hindering asylum seekers’ possibilities to collect and produce evidence supporting their cases, eventually facilitating and speeding up their removal for Member States’ territory. Second, I analyze the encounters between migration management and border-crossers during the identification practices carried out the Hotspots and during the asylum process in terms of “temporal collisions”. I develop the notion of “hijacked knowledge” to illustrate how these “temporal collisions” negatively affect border-crossers’ possibilities of action, by producing a significant lack of knowledge and awareness about the procedures to which they are subjected and their temporal implications. With the concept of “reactive calibration”, on the other hand, I suggest that once migrants become aware of the temporalities of control, they try to appropriate them by aligning their bodies, narrations and identities to those temporalities. The third part of the dissertation describes the situated intervention developed as part of my ethnographic activity. Drawing on participatory design, design justice and STS making and doing, I designed a role-playing game - My documents, check them out - seeking to involve border-crossers in the re-design of the categories usually deployed in migration management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present Dissertation shows how recent statistical analysis tools and open datasets can be exploited to improve modelling accuracy in two distinct yet interconnected domains of flood hazard (FH) assessment. In the first Part, unsupervised artificial neural networks are employed as regional models for sub-daily rainfall extremes. The models aim to learn a robust relation to estimate locally the parameters of Gumbel distributions of extreme rainfall depths for any sub-daily duration (1-24h). The predictions depend on twenty morphoclimatic descriptors. A large study area in north-central Italy is adopted, where 2238 annual maximum series are available. Validation is performed over an independent set of 100 gauges. Our results show that multivariate ANNs may remarkably improve the estimation of percentiles relative to the benchmark approach from the literature, where Gumbel parameters depend on mean annual precipitation. Finally, we show that the very nature of the proposed ANN models makes them suitable for interpolating predicted sub-daily rainfall quantiles across space and time-aggregation intervals. In the second Part, decision trees are used to combine a selected blend of input geomorphic descriptors for predicting FH. Relative to existing DEM-based approaches, this method is innovative, as it relies on the combination of three characteristics: (1) simple multivariate models, (2) a set of exclusively DEM-based descriptors as input, and (3) an existing FH map as reference information. First, the methods are applied to northern Italy, represented with the MERIT DEM (∼90m resolution), and second, to the whole of Italy, represented with the EU-DEM (25m resolution). The results show that multivariate approaches may (a) significantly enhance flood-prone areas delineation relative to a selected univariate one, (b) provide accurate predictions of expected inundation depths, (c) produce encouraging results in extrapolation, (d) complete the information of imperfect reference maps, and (e) conveniently convert binary maps into continuous representation of FH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

American tegumentary leishmaniasis (ATL) is a disease transmitted to humans by the female sandflies of the genus Lutzomyia. Several factors are involved in the disease transmission cycle. In this work only rainfall and deforestation were considered to assess the variability in the incidence of ATL. In order to reach this goal, monthly recorded data of the incidence of ATL in Orán, Salta, Argentina, were used, in the period 1985-2007. The square root of the relative incidence of ATL and the corresponding variance were formulated as time series, and these data were smoothed by moving averages of 12 and 24 months, respectively. The same procedure was applied to the rainfall data. Typical months, which are April, August, and December, were found and allowed us to describe the dynamical behavior of ATL outbreaks. These results were tested at 95% confidence level. We concluded that the variability of rainfall would not be enough to justify the epidemic outbreaks of ATL in the period 1997-2000, but it consistently explains the situation observed in the years 2002 and 2004. Deforestation activities occurred in this region could explain epidemic peaks observed in both years and also during the entire time of observation except in 2005-2007.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pantanal of Nhecolândia, the world's largest and most diversified field of tropical lakes, comprises approximately 10,000 lakes, which cover an area of 24,000 km² and vary greatly in salinity, pH, alkalinity, colour, physiography and biological activity. The hyposaline lakes have variable pHs, low alkalinity, macrophytes and low phytoplankton densities. The saline lakes have pHs above 9 or 10, high alkalinity, a high density of phytoplankton and sand beaches. The cause of the diversity of these lakes has been an open question, which we have addressed in our research. Here we propose a hybrid process, both geochemical and biological, as the main cause, including (1) a climate with an important water deficit and poverty in Ca2+ in both superficial and phreatic waters; and (2) an elevation of pH during cyanobacteria blooms. These two aspects destabilise the general tendency of Earth's surface waters towards a neutral pH. This imbalance results in an increase in the pH and dissolution of previously precipitated amorphous silica and quartzose sand. During extreme droughts, amorphous silica precipitates in the inter-granular spaces of the lake bottom sediment, increasing the isolation of the lake from the phreatic level. This paper discusses this biogeochemical problem in the light of physicochemical, chemical, altimetric and phytoplankton data.