938 resultados para DROSOPHILA GUT IMMUNITY
Resumo:
Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.
Resumo:
Clines in chromosomal inversion polymorphisms-presumably driven by climatic gradients-are common but there is surprisingly little evidence for selection acting on them. Here we address this long-standing issue in Drosophila melanogaster by using diagnostic single nucleotide polymorphism (SNP) markers to estimate inversion frequencies from 28 whole-genome Pool-seq samples collected from 10 populations along the North American east coast. Inversions In(3L)P, In(3R)Mo, and In(3R)Payne showed clear latitudinal clines, and for In(2L)t, In(2R)NS, and In(3R)Payne the steepness of the clinal slopes changed between summer and fall. Consistent with an effect of seasonality on inversion frequencies, we detected small but stable seasonal fluctuations of In(2R)NS and In(3R)Payne in a temperate Pennsylvanian population over 4 years. In support of spatially varying selection, we observed that the cline in In(3R)Payne has remained stable for >40 years and that the frequencies of In(2L)t and In(3R)Payne are strongly correlated with climatic factors that vary latitudinally, independent of population structure. To test whether these patterns are adaptive, we compared the amount of genetic differentiation of inversions versus neutral SNPs and found that the clines in In(2L)t and In(3R)Payne are maintained nonneutrally and independent of admixture. We also identified numerous clinal inversion-associated SNPs, many of which exhibit parallel differentiation along the Australian cline and reside in genes known to affect fitness-related traits. Together, our results provide strong evidence that inversion clines are maintained by spatially-and perhaps also temporally-varying selection. We interpret our data in light of current hypotheses about how inversions are established and maintained.
Resumo:
We have developed a practical exercise for undergraduate students whose main aim is to identify, using genetic crosses, a pair of D. melanogaster mutations (miniature and singed). Each student receives a vial with the problem strain containing two unknown mutations. The first step is to observe and describe both mutations. Then, the students carry out genetic crosses between mutant and normal strains: (P) ♀ mutant strain × ♂ normal strain (P) ♀ normal strain × ♂ mutant strain A different offspring is expected in these crosses: in the first one we will obtain normal females and m sn males, whereas in the second all individuals will present normal phenotype. It is possible to deduce that both are sex linked mutations. With this information and to simplify the amount of work, only F1 individuals from the first cross will be used (m+sn+ / m sn × m sn / Y chrom.) to obtain the F2 generation. By counting the number of miniature (recombinant type), singed (recombinant type), miniature-singed (parental type) and normal (parental type) flies it is possible to estimate the recombination frequency between both genes. Knowing the phenotype, their chromosomal location (X chromosome) and the genetic distance between both mutations, it is possible to identify them by finding all this information in a Drosophila melanogaster genetic map. Additionally, a statistical analysis can be carried out to compare the number of expected F2 individuals with those observed in the experiment. As the distance between both genes is 15.1 m.u., then the expected percentages for each phenotype would be: normal (42.45%), miniature-signed (42.45%), miniature (7.55%) and singed (7.55%). Multiplying the frequency of each class by the total number of individuals obtained in the F2 it is possible to estimate the expected number of flies for each class. Finally, a χ2 test can be computed to ascertain whether there are significant differences between expected and observed number of individuals.
Resumo:
The susceptibility of Drosophila melanogaster to carbofuran and the use of this organism in biomonitoring residues of the insecticide in cabbage was evaluated. Under the conditions of the bioassay, residues-film bioassay in Petri dish, carbofuran degraded depending on the temperature and time of exposure. Bioassays conducted with D. melanogaster showed that its toxicity increases with temperature (20 to 35 °C). LC50 values, calculated as a function of temperature, ranged from 3.6 to 10.5 mg/g body weight (bw) for males and from 2.9 to 8.7 mg/g bw for females. The formulated product Furadan® G was applied on cabbage (Brassica oleracea, var. capitata) and the residues of carbofuran were determined by bioassay. The determination limit of the bioassay was 0.1 mg/kg and the method presented reproducibility with coefficient variation of 17 %. The validation of the bioassay by high performance liquid chromatography confirms the viability of the bioassay with D. melanogaster in monitoring the residues of carbofuran in cabbage.
Resumo:
Using a well-adapted Drosophila subobscura population (Avala, Serbia), a drastic experiment of inbreeding was carried out to assess whether the expected level of homozygosity could be reached or if other evolutionary forces affected the process. In general, no significant changes of inversion (or arrangement) frequencies were detected after 12 brother sister mating generations. Furthermore, no significant differences were obtained between observed and expected (under the inbreeding model) karyotypic frequencies. Thus, these results seemed to indicate that the main evolutionary factor in the experiment was inbreeding. However, in the G12 generation, complete chromosomal fixation was reached only in two out of the eight final inbred lines. In these lines, the chromosomal compositions were difficult to interpret, but they could be likely a consequence of adaptation to particular laboratory conditions (constant 18 °C, food, light period, etc.). Finally, in a second experiment, the inbred lines presented higher fertility at 18 °C than at 13 °C. Also, there was a significant line effect on fertility: inbred line number 6 (A1, J1, U1+2; U1+2+6, E8, and O3+4+7) presented the highest values, which maybe the result of an adaptation to laboratory conditions. Thus, the results obtained in our experiments reflect the adaptive potential of D. subobscura inversions.
Resumo:
Background: Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to"odor on", but also to"odor off". This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. Results: We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVAinduced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. Conclusions: Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction. Keywords: carboxylesterase, esterase 6, olfaction, pheromone, signal termination
Resumo:
Passive immunity transfer (PIT) evaluation is an essential tool for the maintenance of healthy calves during the first months of life. Since lactation number and breed have been proven to influence immunoglobulin levels in colostrum, the aim of this study was to evaluate PIT from primiparous and multiparous Canchim cows to their calves. Blood samples were collected from the calves before colostrum intake and 1, 2, 7, 15 and 30 days thereafter, while colostrum samples from the cows were taken immediately after parturition. Activities of gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), and concentrations of total protein, albumin, globulins, immunoglobulin A (IgA), immunoglobulin G (IgG), total and ionized calcium, inorganic phosphorus, magnesium, sodium and potassium were evaluated in calves' serum and activities of GGT and ALP and concentrations of total protein, IgA and IgG were assessed in cow's colostrum whey. Immunoglobulins concentrations were evaluated by electrophoresis in polyacrylamide gels. Serum biochemistry evaluations revealed an increase in gamma-glutamyl transferase and alkaline phosphatase activities and in total protein, globulins, immunoglobulin A and immunoglobulin G levels in calves' serum after colostrum intake. Only total protein and light chain immunoglobulin G levels in colostrum whey were affected by the cows' lactation number. Phosphorus and magnesium levels in blood serum increased after colostrum intake, while sodium and potassium levels oscillated in the experimental period. PIT was influenced by the cows' lactation number but was efficient in both groups.
Resumo:
The objective of this study was to evaluate and compare the transfer of passive immunity and the proteinogram in Criollo Lageano (CL) and Black and White Holstein (BWH) calves. Two groups were utilized with 13 Criollo Lageano and 10 BWH calves. Blood samples were collected for the measurement of total serum protein, electrophoresis of serum proteins, activity of the gamma glutamyl transferase, and concentration of IgG by the method of the zinc sulfate turbidity in periods between 24 and 36 hours of life, 15, 30, 60, 90, 120, 150 and 180 days. Statistical analysis was performed by ANOVA and Tukey test at 5% significance level, and correlations between variables were calculated. Variations of serum proteins followed a pattern of physiological behavior over the first six months of life and production of immunoglobulins was active earlier in BWH calves and slower in the Criollo Lageano, without causing any impact on their health. Gamma globulin in the first days of life (24-36h) was correlated with IgG (r=0.87 for CL and r=0.89 for BWH), PTS (r=0.91 for CL and r=0.92 for BWH), Glob (r=0.99 for CL and r=0.98 for BWH) and GGT (r=0.14 for CL and r=0.83 for BWH). It was concluded that there was no failure in the transfer of passive immunity in Criollo Lageano calves but this failure occurred in the BWH calves. IgG values estimated by the zinc sulfate turbidity and serum proteins were considered good indicators of the transfer of passive immunity in calves between 24 and 36 hours of life.
Resumo:
A line of one-winged Drosophila subobscura was studied. The absent wing is substituted by a bulky structure with macro and microchaetes, showing a thoracic appearance. Genetic crosses showed that there is no way to select for the trait by simple crossing. The number of one-winged flies in the various generations was always low. In one case a wingless fly was also obtained. The trait presents an unknown genetic pattern.
Resumo:
A review of our recent work on the cromosomal evolution of the Drosophila repleta species group is presented. Most studies have focused on the buzzatii species complex, a monophyletic set of 12 species which inhabit the deserts of South America and the West Indies. A statistical analysis of the length and breakpoint distribution of the 86 paracentric inversions observed in this complex has shown that inversion length is a selected trait. Rare inversions are usually small while evolutionary successful inversions, fixed and polymorphic, are predominantly of medium size. There is also a negative correlation between length and number of inversions per species. Finally, the distribution of inversion breakpoints along chromosome 2 is non-random, with chromosomal regions which accumulate up to 8 breakpoints (putative "hot spots"). Comparative gene mapping has also been used to investigate the molecular organization and evolution of chromosomes. Using in situ hybridization, 26 genes have been precisely located on the salivary gland chromosomes of D. repleta and D. buzzatii; another nine have been tentatively identified. The results are fully consistent with the currently accepted chromosomal homologies between D. repleta and D. melanogaster, and no evidence for reciprocal translocations or pericentric inversions has been found. The comparison of the gene map of D. repleta chromosome 2 with that of the homologous chromosome 3R of D. melanogaster shows an extensive reorganization via paracentric inversions and allows to estimate an evolution rate of ~1 inversion fixed per million years for this chromosome
Resumo:
Drosophila paulistorum populations colonizing the urban area of Porto Alegre, southern Brazil, were studied with the objective of characterizing their chromosomal polymorphism in this new environment. Despite being geographically and ecologically marginal and the fact that the colonization of the urban area seems to be a recent event, the populations showed a large number of inversions on all chromosome arms. Differences regarding inversion frequencies and percentage of heterozygosis were found when we compared the samples with respect to geographical, microenvironmental and temporal aspects. Such differences, however, could be attributed to both selective and stochastic factors
Resumo:
The effect of two concentrations of caffeine (1500 mg/ml and 2500 mg/ml) on mitotic indices of Drosophila prosaltans was analyzed in larval brain cells. Although the differences detected between treated and control cells were not significant, the percentages obtained suggest a possible effect of caffeine in slowing the process of cell division
Resumo:
Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI) maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host). Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.
Resumo:
Resistance to Trypanosoma cruzi infections is critically dependent on cytokine-mediated activation of cell-mediated immune effector mechanisms. This review focuses on the role of IL-10, TNF-a, IFN-g and IL-12 in controlling T. cruzi replication by the innate and specific immune systems of the vertebrate host. A study performed on mice with disrupted recombinase-activating genes (RAG/KO), which lack T and B lymphocytes, revealed the importance of IL-12, IFN-g and TNF-a in the resistance against T. cruzi mediated by the innate immune system. In addition, data from experiments using IL-10 KO, RAG/KO and double RAG/IL-10 KO mice indicating an in vivo regulatory role of IL-10 in innate and T. cruzi-specific immunity are discussed