984 resultados para DNA Fragment Assembly
Resumo:
The well established rat hepatocarcinogen N-nitrosopytrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 mu mol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 mu mol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 mu mol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.
Resumo:
Drinking hot mate has been associated with risk for esophageal cancer in South America. Thus. the aims of this study were to evaluate the modifying effects of mate intake on DNA damage and esophageal carcinogenesis induced by diethylnitrosamine (DEN) and thermal injury (TI) in male Wistar rats. At the initiation phase of carcinogenesis, rats were treated with DEN (8 x 80 mg/kg) and submitted to TI (water at 65 degrees C, 1 ml/rat, instilled into the esophagus). Concomitantly, the animals received mate (2.0% w/v) for 8 weeks. Samples of peripheral blood were collected 4 h after the last DEN application for DNA damage analysis. At weeks 8 and 20, samples from esophagus and liver were also collected for histological and immunohistochemical analysis. Mate significantly decreased DNA damage in leukocytes, cell proliferation rates in both esophagus and liver and the number of preneoplastic liver lesions from DEN/TI-treated animals at week 8. A significant lower incidence of esophageal papillomas and liver adenomas and tumor multiplicity was observed in the animals previously treated with mate at week 20. Thus, mate presented protective effects against DNA damage and esophageal and liver carcinogenesis induced by DEN. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To examine the association between methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C), methionine synthase (MTR) A2756G and methionine synthase reductase (MTRR) A66G gene polymorphisms and total homocysteine (tHcy), methylmalonic acid (MMA) and S-adenosylmethionine/ S-adenosylhomocysteine (SAM/SAH) levels; and to evaluate the potential interactions with folate or cobalamin (Cbl) status. Subjects/ Methods: Two hundred seventy-five healthy women at labor who delivered full-term normal babies. Cbl, folate, tHcy, MMA, SAM and SAH were measured in serum specimens. The genotypes for polymorphisms were determined by PCR-restriction fragment length polymorphism ( RFLP). Results: Serum folate, MTHFR 677T allele and MTR 2756AA genotypes were the predictors of tHcy levels in pregnant women. Serum Cbl and creatinine were the predictors of SAM/SAH ratio and MMA levels, respectively. The gene polymorphisms were not determinants for MMA levels and SAM/SAH ratios. Low levels of serum folate were associated with elevated tHcy in pregnant women, independently of the gene polymorphisms. In pregnant women carrying MTHFR 677T allele, or MTHFR 1298AA or MTRR 66AA genotypes, lower Cbl levels were associated with higher levels of tHcy. Lower SAM/SAH ratio was found in MTHFR 677CC or MTRR A2756AA genotypes carriers when Cbl levels were lower than 142 pmol/l. Conclusions: Serum folate and MTHFR C677T and MTR A2576G gene polymorphisms were the determinants for tHcy levels. The interaction between low levels of serum Cbl and MTHFR (C677T or A1298C) or MTRR A66G gene polymorphisms was associated with increased tHcy.
Resumo:
Nucleotide excision repair (NER) eliminates helix-distorting DNA base lesions. Seven XP-deficient genetic complementation groups (XPA to XPG) have already been identified in mammals, and their corresponding genes have been cloned. Hereditary defects in NER are associated with several diseases, including xeroderma pigmentosum (XP). UV-DDB (XPE) is formed by two associated subunits, DDB1 and DDB2. UV-DDB was identified biochemically as a protein factor that exhibits very strong and specific binding to ultraviolet (UV)-treated DNA. As a preliminary step to characterize the components of the NER in the filamentous fungus Aspergillus nidulans, here we identified a putative DDB1 homologue, DdbA. Deletion and expression analysis indicated that A. nidulans ddbA gene is involved in the DNA damage response, more specifically in the UV light response and 4-nitroquinoline oxide (4-NQO) sensitivity. Furthermore, the Delta ddbA strain cannot self-cross and expression analysis showed that ddbA can be induced by oxidative stress and is developmentally regulated in both asexual and sexual processes. The Delta ddbA mutation can genetically interact with uvsB(ATR), atmA(ATM), nkuA(KU70), H2AX-S129A (a replacement of the conserved serine in the C-terminal of H2AX with alanine), and cshB (a mutation in CSB Cockayne`s syndrome protein involved in the transcription-coupled repair subpathway of NER) mutations. Finally, to determine the DdbA cellular localization, we constructed a GFP:DdbA strain. In the presence and absence of DNA damage, DdbA was mostly detected in the nuclei, indicating that DdbA localizes to nuclei and its cellular localization is not affected by the cellular response to DNA damage induced by 4-NQO and UV light.
Resumo:
The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 mu g/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.
Resumo:
Lutein (LT) is the second most prevalent carotenoid in human serum, and it is abundantly present in dark, leafy green vegetables. The objectives of this study were to evaluate the genotoxicity and mutagenicity of LT, and its protective effects in vivo against DNA damage and chromosome instability induced by cisplatin (cDDP). For this purpose, we used the comet assay and micronucleus (MN) test, and we evaluated the antioxidant effects of LT by determination of enzymatic (catalase-CAT) and non-enzymatic (reduced glutathione-GSH) activity. Mice were divided into six groups: cDDP, mineral oil (OM), LT groups and LT + cDDP groups. To perform the MN test on peripheral blood (PB) cells, blood samples were collected before the first treatment (T0), and 36 h (T1) and 14 days (T2) after the first treatment. To perform the comet assay, blood samples were collected 4 h after the first and the last treatment. Oxidative capacity was analyzed in total blood that was collected 24 h after the last treatment, when bone marrow (BM) sample was also collected for the MN test. No genotoxic or mutagenic effects of LT were observed for the doses evaluated. We did find that this carotenoid was able to reduce the formation of crosslinks and chromosome instability induced by cDDP. No differences were observed in CAT levels, and LT treatment increased GSH levels compared with a negative control group, reinforcing the role of this carotenoid as an antioxidant.
Resumo:
A very appropriate method for antigenotoxicity evaluation of antioxidants is the comet assay, since this analytical method detects initial DNA lesions that are still subject to repair; in other words, lesions that are very associated to damages resulting from the generation and subsequent action of reactive species. However, a solid evaluation should be developed in order to avoid inexact interpretations. In our study, besides the association of curcumin with cisplatin, curcumin and cisplatin agents were also tested separately. Classical genotoxic compounds, when tested by the comet assay, present an increase in the nucleoid tail; however, the cisplatin treatment has resulted in a decrease of DNA migration. This was an expected effect, as the cross-links between cisplatin and DNA decrease the DNA electrophoretic mobility. A similar effect was observed with the curcumin treatment, which decreased the nucleoid tail. Such effect was not expected and reinforced the necessity of including in the study, separate treatment groups with potentially antigenotoxic substances. The comet assay results have been analyzed using specific software for image analysis, as well as the classical visual analysis, and we have observed that the effect of decrease in DNA electrophoretic mobility was more easily observed when the data were analyzed by the software.
Resumo:
Azo dyes constitute the largest group of colorants used in industry and can pass through municipal waste water plants nearly unchanged due to their resistance to aerobic treatment, which potentially exposes humans and local biota to adverse effects. Unfortunately, little is known about their environmental fate. Under anaerobic conditions, some azo dyes are cleaved by microorganisms forming potentially carcinogenic aromatic amines. In the present study, the azo dye Disperse Orange 1, widely used in textile dyeing, was tested using the comet, Salmonella/microsome mutagenicity, cell viability, Daphnia similis and Microtox (R) assays. The human hepatoma cell line (HepG2) was used in the comet assay and for cell viability. In the mutagenicity assay. Salmonella typhimurium strains with different levels of nitroreductase and o-acetyltransferase were used. The dye showed genotoxic effects with respect to HepG2 cells at concentrations of 0.2, 0.4, 1.0, 2.0 and 4.0 mu g/mL. In the mutagenicity assay, greater responses were obtained with the strains TA98 and YG1041, suggesting that this compound mainly induces frameshift mutations. Moreover, the mutagenicity was greatly enhanced with the strains overproducing nitroreductase and o-acetyltransferase, showing the importance of these enzymes in the mutagenicity of this dye. In addition, the compound induced apoptosis after 72 h in contact with the HepG2 cells. No toxic effects were observed for either D. similis or Vibrio fischeri. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Bent DNA sites promote the curvature of DNA in both eukaryotic and prokaryotic chromosomes. Here, we investigate the localization and structure of intrinsically bent DNA sites in the extensively characterized Drosophila melanogaster third chromosome DAFC-66D segment (Drosophila amplicon in the follicle cells). This region contains the amplification control element ACE3, which is a replication enhancer that acts in cis to activate the major replication origin ori-beta. Through both electrophoretic and in silico analysis, we have identified three major bent DNA sites in DAFC-66D. The bent DNA site (b1) is localized in the ACE3 element, whereas the other two bent DNA sites (b2 and b3) are localized in the ori-beta region. Four additional bent DNA sites were identified in the intron of the S18 gene and near the TATA box of the S15, S19, and S16 genes. The identification of DNA bent sites in genomic regions previously characterized as functionally relevant for DNA amplification further supports a function for DNA bent sites in DNA replication in eukaryotes.
Resumo:
This work evaluated the Modulation of reactive oxygen species (ROS) produced by the cisplatin-human DNA interaction in a cell-free experimental model by the carotenoids bixin and lycopene extracted from, natural dietary Sources and purified through luminol- and Cypridina luciferin methoxy-analogue (MCLA)- enhanced chemiluminescence assays. The results showed that the ROS generation by DNA-cisplatin interaction was inhibited by both lycopene and bixin in a concentration-dependent manner. At a concentration of 100 mu M, lycopene and bixin inhibited Superoxide anion (O center dot(2)) generation at 90% and 82%, respectively, and the total ROS generation at 44% and 42%, respectively. The formation of significant amounts of isomers or degradation products of both carotenoids was not observed after ROS scavenging, as evaluated by high-performance liquid chromatography. Taken together, these results Suggest that carotenoids can be helpful to Modulate the oxidative stress found in cancer therapy with cisplatin. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A diagnostic PCR assay was designed based on conserved regions of previously sequenced densovirus genomic DNA isolated from mosquitoes. Application of this assay to different insect cell lines resulted in a number of cases of consistent positive amplification of the predicted size fragment. Positive PCR results were subsequently confirmed to correlate with densovirus infection by both electron microscopy and indirect fluorescent antibody test. In each case the nucleotide sequence of the amplified PCR fragments showed high identity to previously reported densoviruses isolated from mosquitoes. Phylogenetic analysis based on these sequences showed that two of these isolates were examples of new densoviruses. These viruses could infect and replicate in mosquitoes when administered orally or parenterally and these infections were largely avirulent. In one virus/mosquito combination vertical transmission to progeny was observed. The frequency with which these viruses were detected would suggest that they may be quite common in insect cell lines.
Resumo:
Aim: Unless specifically treated (glucocorticoids in low doses), Familial Hyperaldosteronism Type I(FH-I) may result in early death from stroke. We report the successful application of a rapid, polymerase chain reaction (PCR)-based method of detecting the 'hybrid' 11 beta-hydroxylase (11 beta-OHase)/aldosterone synthase (AS) gene as a screening test for FH-I. Methods: 'Long-PCR' was used to amplify, concurrently, a 4 kb fragment of AS gene (both primers AS-specific) and a 4 kb fragment of the hybrid gene (5' primer 11 beta-OHase-specific, 3'primer AS-specific) from DNA extracted from blood either collected locally or transported from elsewhere. Sample collection and transport were straightforward. This 4 kb fragment contains all the currently recognised hybrid gene 'crossover' points. Results: Within a single family, long-PCR identified all 21 individuals known to have FH-I. Hypertension was corrected in all 11 treated with glucocorticoids. Nine with normal blood pressure are being closely followed for development of hypertension. Long-PCR cord blood analysis excluded FH-I in three neonates born to affected individuals. Long-PCR newly identified two other affected families: (1) a female (60 years) with a personal and family history of stroke and her normotensive daughter (40 years), and (2) a female (51 years) previously treated for primary aldosteronism with amiloride, her two hypertensive sons (14 and 16 years) and her hypertensive mother (78 years). No false negative or false positive results have yet been encountered. At least seven other centres have successfully performed this test. Conclusion: Long-PCR is a reliable method of screening individuals of all ages for FH-I.