774 resultados para DIAGNOSTICO POR IMAGENES
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Cirurgia Veterinária - FCAV
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE
Estudo quantitativo da infecção por Babesia bovis em bovinos de corte de diferentes grupos genéticos
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Pós-graduação em História - FCHS
Resumo:
Desde a incorporação da automação no processo produtivo, a busca por sistemas mais eficientes, objetivando o aumento da produtividade e da qualidade dos produtos e serviços, direcionou os estudos para o planejamento de estratégias que permitissem o monitoramento de sistemas com o intuito principal de torna-los mais autônomos e robustos. Por esse motivo, as pesquisas envolvendo o diagnóstico de faltas em sistemas industriais tornaram-se mais intensivas, visto a necessidade da incorporação de técnicas para monitoramente detalhado de sistemas. Tais técnicas permitem a verificação de perturbações, falta ou mesmo falhas. Em vista disso, essa trabalho investiga técnicas de detecção e diagnostico de faltas e sua aplicação em motores de indução trifásicos, delimitando o seu estudo em duas situações: sistemas livre de faltas, e sobre atuação da falta incipiente do tipo curto-circuitoparcial nas espiras do enrolamento do estator. Para a detecção de faltas, utilizou-se analise paramétrica dos parâmetros de um modelo de tempo discreto, de primeira ordem, na estrutura autoregressivo com entradas exógenas (ARX). Os parâmetros do modelo ARX, que trazem informação sobre a dinâmica dominante do sistema, são obtidos recursivamente pela técnica dos mínimos quadrados recursivos (MQR). Para avaliação da falta, foi desenvolvido um sistema de inferência fuzzy (SIF) intervala do tipo-2, cuja mancha de incerteza ou footprint of uncertainty (FOU), características de sistema fuzzy tipo-2, é ideal como forma de representar ruídos inerentes a sistemas reais e erros numéricos provenientes do processo de estimação paramétrica. Os parâmetros do modelo ARX são entradas para o SIF. Algoritmos genéricos (AG’s) foram utilizados para otimização dos SIF intervalares tipo-2, objetivando reduzir o erro de diagnóstico da falta identificada na saída desses sistemas. Os resultados obtidos em teste de simulação computacional demonstram a efetividade da metodologia proposta.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV