927 resultados para DARK ENERGY THEORY
Resumo:
Quantitative scaling relationships among body mass, temperature and metabolic rate of organisms are still controversial, while resolution may be further complicated through the use of different and possibly inappropriate approaches to statistical analysis. We propose the application of a modelling strategy based on the theoretical approach of Akaike's information criteria and non-linear model fitting (nlm). Accordingly, we collated and modelled available data at intraspecific level on the individual standard metabolic rate of Antarctic microarthropods as a function of body mass (M), temperature (T), species identity (S) and high rank taxa to which species belong (G) and tested predictions from metabolic scaling theory (mass-metabolism allometric exponent b = 0.75, activation energy range 0.2-1.2 eV). We also performed allometric analysis based on logarithmic transformations (lm). Conclusions from lm and nlm approaches were different. Best-supported models from lm incorporated T, M and S. The estimates of the allometric scaling exponent linking body mass and metabolic rate resulted in a value of 0.696 +/- 0.105 (mean +/- 95% CI). In contrast, the four best-supported nlm models suggested that both the scaling exponent and activation energy significantly vary across the high rank taxa (Collembola, Cryptostigmata, Mesostigmata and Prostigmata) to which species belong, with mean values of b ranging from about 0.6 to 0.8. We therefore reached two conclusions: 1, published analyses of arthropod metabolism based on logarithmic data may be biased by data transformation; 2, non-linear models applied to Antarctic microarthropod metabolic rate suggest that intraspecific scaling of standard metabolic rate in Antarctic microarthropods is highly variable and can be characterised by scaling exponents that greatly vary within taxa, which may have biased previous interspecific comparisons that neglected intraspecific variability.
Resumo:
Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport. © 2013 American Physical Society.
Resumo:
The selective hydrogenation of acetylene to ethylene on several Pd surfaces (Pd(111), Pd(100), Pd(211), and Pd(211)-defect) and Pd surfaces with subsurface species (carbon and hydrogen) as well as a number of Pd-based alloys (Pd-M/Pd(111) and Pd-M/Pd(211) (M = Cu, Ag and Au)) are investigated using density functional theory calculations to understand both the acetylene hydrogenation activity and the selectivity of ethylene formation. All the hydrogenation barriers are calculated, and the reaction rates on these surfaces are obtained using a two-step model. Pd(211) is found to have the highest activity for acetylene hydrogenation while Pd(100) gives rise to the lowest activity. In addition, more open surfaces result in over-hydrogenation to form ethane, while the close-packed surface (Pd(111)) is the most selective. However, we also find that the presence of subsurface carbon and hydrogen significantly changes the reactivity and selectivity of acetylene toward hydrogenation on Pd surfaces. On forming surface alloys of Pd with Cu, Ag and Au, the selectivity for ethylene is also found to be changed. A new energy decomposition method is used to quantitatively analyze the factors in determining the changes in selectivity. These surface modifiers are found to block low coordination unselective sites, leading to a decreased ethane production. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Resumo:
Boron-modified Pd catalysts have shown excellent performance for the selective hydrogenation of alkynes experimentally. In the current work, we investigated the hydrogenation of acetylene on boron-modified Pd(111) and Pd(211) surfaces, utilizing density functional theory calculations. The activity of acetylene hydrogenation has been studied by estimating the effective barrier of the whole process. The selectivity of ethylene formation is investigated from a comparison between the desorption and the hydrogenation of ethylene as well as comparison between the ethylene and the 1,3-butadiene formation. Formation of subsurface carbon and hydrogen on both boron-modified Pd(111) and Pd(211) surfaces has also been evaluated, since these have been reported to affect both the activity and the selectivity of acetylene hydrogenation to produce ethylene on Pd surfaces. Our results provide some important insights into the Pd B catalysts for selective hydrogenation of acetylene and also for more complex hydrogenation systems, such as stereoselective hydrogenation of longer chain alkynes and selective hydrogenation of vegetable oil.
Resumo:
Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun's quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.
Resumo:
Today's multi-media electronic era is driven by the increasing demand for small multifunctional devices able to support diverse services. Unfortunately, the high levels of transistor integration and performance required by such devices lead to an unprecedented increase of on-chip power that significantly limits the battery lifetime and even poses reliability concerns. Several techniques have been developed to address the power increase, but voltage over-scaling (VOS) is considered to be one of the most effective ones due to the quadratic dependence of voltage on dynamic power consumption. However, VOS may not always be applicable since it increases the delay in all paths of a system and may limit high performance required by today's complex applications. In addition, application of VOS is further complicated since it increases the variations in transistor characteristics imposed by their tiny size which can lead to large delay and leakage variations, making it difficult to meet delay and power budgets. This paper presents a review of various cross-layer design options that can provide solutions for dynamic voltage over-scaling and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems. © 2011 IEEE.
Resumo:
Energy harvesting from ambient vibration is a promising field, especially for applications in larger infrastructures such as bridges. These structures are more frequently monitored for damage detection because of their extended life, increased traffic load and environmental deterioration. In this regard, the possibility of sourcing the power necessary for the sensors from devices embedded in the structure, thus cutting the cost due to the management of battery replacing over the lifespan of the structure, is particularly attracting. Among others, piezoelectric devices have proven to be especially effective and easy to apply since they can be bonded to existing host structure. For these devices the energy harvesting capacity is achieved directly from the variation in the strain conditions from the surface of the structure. However these systems need to undergo significant research for optimisation of their harvesting capacity and for assessing the feasibility of application to various ranges of bridge span and load. In this regard scaled bridge prototypes can be effectively used not only to assess numerical models and studies in an inexpensive and repeatable way but also to test the electronic devices under realistic field conditions. In this paper the theory of physical similitude is applied to the design of bridge beams with embedded energy harvesting systems and health monitoring sensors. It will show both how bridge beams can be scaled in such a way to apply and test energy harvesting systems and 2) how experimental data from existing bridges can be applied to prototypes in a laboratory environment. The study will be used for assessing the reliability of the system over a train bridge case study undergoing a set load cycles and induced localised damage.
Resumo:
While investigations using covert food manipulations tend to suggest that individuals are poor at adjusting for previous energy intake, in the real world adults rarely consume foods of which they are ill-informed. This study investigated the impact in fully complicit consumers of consuming commercially available dark chocolate, milk chocolate, sweet biscuits and fruit bars on subsequent appetite. Using a repeated measures design, participants received four small portions (4 × 10-11 g) of either dark chocolate, milk chocolate, sweet biscuits, fruit bars or no food throughout five separate study days (counterbalanced in order), and test meal intake, hunger, liking and acceptability were measured. Participants consumed significantly less at lunch following dark chocolate, milk chocolate and sweet biscuits compared to no food (smallest t(19) = 2.47, p = 0.02), demonstrating very good energy compensation (269-334%). No effects were found for fruit bars (t(19) = 1.76, p = 0.09), in evening meal intakes (F(4,72) = 0.62, p = 0.65) or in total intake (lunch + evening meal + food portions) (F(4,72) = 0.40, p = 0.69). No differences between conditions were found in measures of hunger (largest F(4,76) = 1.26, p = 0.29), but fruit bars were significantly less familiar than all other foods (smallest t(19) = 3.14, p = 0.01). These findings demonstrate good compensation over the short term for small portions of familiar foods in complicit consumers. Findings are most plausibly explained as a result of participant awareness and cognitions, although the nature of these cognitions cannot be discerned from this study. These findings however, also suggest that covert manipulations may have limited transfer to real world scenarios.
Resumo:
Asymmetric MarcusHush (AMH) theory is applied for the first time in ionic solvents to model the voltammetric reduction of oxygen in 1-butyl-1-methylpyrrolidinium bis-(trifluoromethylsulfonyl)-imide and of 2-nitrotoluene (2-NT), nitrocyclopentane (NCP), and 1-nitro-butane (BuN) in trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate on a gold microdisc electrode. An asymmetry parameter, gamma, was estimated for all systems as -0.4 for the reduction of oxygen and -0.05, 0.25, and 0 +/- 0.05 for the reductions of 2-NT, NCP, and BuN, respectively, which suggests equal force constants of reactants and products in the case of 2-NT and BuN and unequal force constants for oxygen and NCP where the force constants of the oxidized species are greater than the reduced species in the case of oxygen and less than the reduced species in the case of NCP. Previously measured values for a, the Butler-Volmer transfer coefficient, reflect this in each case. Where appreciable asymmetry occurs, AMH theory was seen to parametrize the experimental data better than either Butler-Volmer or symmetric Marcus-Hush theory, allowing additionally the extraction of reorganization energy. This is the first study to provide key physical insights into electrochemical systems in room-temperature ionic liquids using AMH theory, allowing elucidation of the reorganization energies and the relative force constants of the reactants and products in each reaction.
Resumo:
Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.
Resumo:
Dry reforming is a promising reaction to utilise the greenhouse gases CO2 and CH4. Nickel-based catalysts are the most popular catalysts for the reaction, and the coke formation on the catalysts is the main obstacle to the commercialisation of dry reforming. In this study, the whole reaction network of dry reformation on both flat and stepped nickel catalysts (Ni(111) and Ni(211)) as well as nickel carbide (flat: Ni3C(001); stepped: Ni3C(111)) is investigated using density functional theory calculations. The overall reaction energy profiles in the free energy landscape are obtained, and kinetic analyses are utilised to evaluate the activity of the four surfaces. By careful examination of our results, we find the following regarding the activity: (i) flat surfaces are more active than stepped surfaces for the dry reforming and (ii) metallic nickel catalysts are more active than those of nickel carbide, and therefore, the phase transformation from nickel to nickel carbide will reduce the activity. With respect to the coke formation, the following is found: (i) the coke formation probability can be measured by the rate ratio of CH oxidation pathway to C oxidation pathway (r(CH)/r(C)) and the barrier of CO dissociation, (ii) on Ni(111), the coke is unlikely to form, and (iii) the coke formations on the stepped surfaces of both nickel and nickel carbide can readily occur. A deactivation scheme, using which experimental results can be rationalised, is proposed.
Resumo:
The activation of oxygen molecules is an important issue in the gold-catalyzed partial oxidation of alcohols in aqueous solution. The complexity of the solution arising from a large number of solvent molecules makes it difficult to study the reaction in the system. In this work, O-2 activation on an Au catalyst is investigated using an effective approach to estimate the reaction barriers in the presence of solvent. Our calculations show that O-2 can be activated, undergoing OOH* in the presence of water molecules. The OOH* can readily be formed on Au(211) via four possible pathways with almost equivalent free energy barriers at the aqueous-solid interface: the direct or indirect activation of O-2 by surface hydrogen or the hydrolysis of O-2 following a Langmuir-Hinshelwood mechanism or an Eley-Rideal mechanism. Among them, the Eley-Rideal mechanism may be slightly more favorable due to the restriction of the low coverage of surface H on Au(211) in the other mechanisms. The results shed light on the importance of water molecules on the activation of oxygen in gold-catalyzed systems. Solvent is found to facilitate the oxygen activation process mainly by offering extra electrons and stabilizing the transition states. A correlation between the energy barrier and the negative charge of the reaction center is found. The activation barrier is substantially reduced by the aqueous environment, in which the first solvation shell plays the most important role in the barrier reduction. Our approach may be useful for estimating the reaction barriers in aqueous systems.
Resumo:
Reactivity of supported gold catalysts is a hot topic in catalysis for many years. This communication reports an investigation on the dissociation of molecular hydrogen at the perimeter sites of Au/TiO2 and the spillover of hydrogen atoms from the gold to the support using density functional theory calculations. It is found that the heterolytic dissociation is favoured in comparison with homolytic dissociation of molecular hydrogen at the perimeter sites. However, the surface oxygen of the rutile TiO2(110) surface at these sites can be readily passivated by the formed OH, suggesting that further dissociation of molecular hydrogen may occur at pure gold sites.
Resumo:
Density functional theory calculations were carried out to examine the mechanism of ethanol decomposition on the Rh(211) surface. We found that there are two possible decomposition pathways: (1) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(3)CO -> CH(3) + CO -> CH(2) + CO -> CH + CO -> C + CO and (2) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(2)COH -> CHCOH -> CHCO -> CH + CO -> C + CO. Both pathways have a common intermediate of CH(3)COH, and the key step is the formation of CH(3)CHOH species. According to our calculations, the mechanism of ethanol decomposition on Rh(211) is totally different from that on Rh(111): the reaction proceeds via CH(3)COH rather than an oxametallacycle species (-CH(2)CH(2)O- for Rh( 111)), which implies that the decomposition process is structure sensitive. Further analyses on electronic structures revealed that the preference of the initial C(alpha)-H path is mainly due to the significant reduction of d-electron energy in the presence of the transition state (TS) complex, which may stabilize the TS-surface system. The present work first provides a clear picture for ethanol decomposition on stepped Rh(211), which is an important first step to completely understand the more complicated reactions, like ethanol steam reforming and electrooxidation.
Resumo:
Nitrogen-doped graphene (N-graphene) was reported to exhibit a good activity experimentally as an electrocatalyst of oxygen reduction reaction (ORR) on the cathode of fuel cells under the condition of electropotential of similar to 0.04 V (vs. NNE) and pH of 14. This material is promising to replace or partially replace the conventionally used Pt. In order to understand the experimental results. ORR catalyzed by N-graphene is studied using density functional theory (DFT) calculations under experimental conditions taking the solvent, surface adsorbates, and coverages into consideration. Two mechanisms, i.e., dissociative and associative mechanisms, over different N-doping configurations are investigated. The results show that N-graphene surface is covered by O with 1/6 monolayer, which is used for reactions in this work. The transition state of each elementary step was identified using four different approaches, which give rise to a similar chemistry. A full energy profile including all the reaction barriers shows that the associative mechanism is more energetically favored than the dissociative one and the removal of O species from the surface is the rate-determining step. (C) 2011 Elsevier Inc. All rights reserved.