993 resultados para Crystal Growth, Purple Bronze, Low Dimensionality, Superconductivity
Resumo:
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Resumo:
In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.
Resumo:
This study examined reading and mathematics achievement growth for middle school students over three years using statewide test scores using student growth percentile methodology (Betebenner, 2008). This newly-emerging growth methodology provides a basis for examining growth normatively (“what is”) in order to provide a foundation for policies about adequate growth (“what should be”) and excellent growth (“what could be”). Growth is compared among student subgroups and different middle schools. A particular focus of the study is identifying typical growth trajectories of low-achieving 6th graders through the middle school years.
Resumo:
Barremian through uppermost Aptian strata from ODP Hole 641C, located upslope of a tilted fault block on the Galicia margin (northwest Spain), are syn-rift sediments deposited in the bathyal realm and are characterized by rapid sedimentation from turbidity currents and debris flows. Calcarenite and calcirudite turbidites contain shallow-water carbonate, terrigenous, and pelagic debris, in complete or partial Bouma sequences. These deposits contain abraded micritized bioclasts of reefal debris, including rudist fragments. The youngest turbidite containing shallow-water carbonate debris at Site 641 defines the boundary between syn-rift and post-rift sediments; this is also the boundary between Aptian and Albian sediments. Some Aptian turbidites are partially silicified, with pore-filling chalcedony and megaquartz. Adjacent layers of length-fast and -slow chalcedony are succeeded by megaquartz as the final pore-filling stage within carbonate reef debris. Temperatures of formation, calculated from the oxygen isotopic composition of the authigenic quartz, are relatively low for formation of quartz but are relatively warm for shallow burial depths. This quartz cement may be interpreted as a rift-associated precipitate from seawater-derived epithermal fluids that migrated along a fault associated with the tilted block and were injected into the porous turbidite beds. These warm fluids may have cooled rapidly and precipitated silica at the boundaries of the turbidite beds as a result of contact with cooler pore waters. The color pattern in the quartz cement, observed by cathodoluminescence and fluorescence techniques, and changes in the trace lement geochemistry mimic the textural change of the different quartz layers and indicates growth synchronism of the different quartz phases. Fluorescence petrography of neomorphosed low-Mg-calcite bioclasts in the silicified turbidites shows extensive zonation and details of replacive crystal growth in the bioclasts that are not observed by cathodoluminescence. Fluorescence microscopy also reveals a competitive growth history during neomorphism of the adjacent crystals in an altered carbonate bioclast. Barremian-Aptian background pelagic sediments from Hole 641C have characteristics similar to pelagic sediments from the Blake-Bahama Formation described by Jansa et al. (1979) from the western North Atlantic. Sediments at this site differ from the Blake-Bahama Formation type locality in that the Barremian-Aptian pelagic sediments have a higher percentage of dark calcareous claystone and some turbidites are silicified at Site 641. The stable isotopic composition of the pelagic marlstones from Site 641 is similar to those of other Berriasian-Aptian pelagic sediments from the Atlantic.
Resumo:
The influence of the substrate temperature, III/V flux ratio, and mask geometry on the selective area growth of GaN nanocolumns is investigated. For a given set of growth conditions, the mask design (diameter and pitch of the nanoholes) is found to be crucial to achieve selective growth within the nanoholes. The local III/V flux ratio within these nanoholes is a key factor that can be tuned, either by modifying the growth conditions or the mask geometry. On the other hand, some specific growth conditions may lead to selective growth but not be suitable for subsequent vertical growth. With optimized conditions, ordered GaN nanocolumns can be grown with a wide variety of diameters. In this work, ordered GaN nanocolumns with diameter as small as 50 nm are shown.
Resumo:
Selective area growth of a-plane GaN nanocolumns by molecular beam epitaxy was performed for the first time on a-plane GaN templates. Ti masks with 150 nm diameter nanoholes were fabricated by colloidal lithography, an easy, fast and cheap process capable to handle large areas. Even though colloidal lithography does not provide a perfect geometrical arrangement like e-beam lithography, it produces a very homogeneous mask in terms of nanohole diameter and density, and is used here for the first time for the selective area growth of GaN. Selective area growth of a-plane GaN nanocolumns is compared, in terms of anisotropic lateral and vertical growth rates, with GaN nanocolumns grown selectively on the c-plane
Resumo:
GaInP nucleation on Ge(100) often starts by annealing of the Ge(100) substrates under supply of phosphorus precursors. However, the influence on the Ge surface is not well understood. Here, we studied vicinal Ge(100) surfaces annealed under tertiarybutylphosphine (TBP) supply in MOVPE by in situ reflection anisotropy spectroscopy (RAS), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). While XPS reveals a P termination and the presence of carbon on the Ge surface, LEED patterns indicate a disordered surface probably due to by-products of the TBP pyrolysis. However, the TBP annealed Ge(100) surface exhibits a characteristic RA spectrum, which is related to the P termination. RAS allows us to in situ control phosphorus desorption dependent on temperature.
Resumo:
TiO2 nanoparticles with tailored morphology have been synthesized under exceptionally soft conditions. The strategy is based on the use of a non-aqueous alcoholic reaction medium in which water traces, coming either from the air (atmospheric water) or from an ethanol–water azeotropic mixture (ethanol 96%), are incorporated in order to accelerate hydrolysis of the Ti–precursor. Moreover, organic surfactants have been used as capping agents so as to tailor crystal growth in certain preferential directions. Combinations of oleic acid and oleylamine, which lead to the formation of another surfactant, dioleamide, are employed instead of fluorine-based compounds, thus increasing the sustainability of the process. As a result, TiO2 nanostructured hierarchical microspheres and individual nanoparticles with exposed high-energy facets can be obtained at atmospheric pressure and temperatures as low as 78 °C.
Resumo:
El ensamblado de nanotubos de carbono (CNT) como una fibra macroscópica en la cual están orientados preferentemente paralelos entre sí y al eje de la fibra, ha dado como resultado un nuevo tipo de fibra de altas prestaciones derivadas de la explotación eficiente de las propiedades axiales de los CNTs, y que tiene un gran número de aplicaciones potenciales. Fibras continuas de CNTs se produjeron en el Instituto IMDEA Materiales mediante el proceso de hilado directo durante la reacción de síntesis por deposición química de vapores. Uno de los objetivos de esta tesis es el estudio de la estructura de estas fibras mediante técnicas del estado del arte de difracción de rayos X de sincrotrón y la elaboración de un modelo estructural de dicho material. Mediciones texturales de adsorción de gases, análisis de micrografías de electrones y dispersión de rayos X de ángulo alto y bajo (WAXS/SAXS) indican que el material tiene una estructura mesoporosa con una distribución de tamaño de poros ancha derivada del amplio rango de separaciones entre manojos de CNTs, así como una superficie específica de 170m2/g. Los valores de dimensión fractal obtenidos mediante SAXS y análisis Barrett-Joyner-Halenda (BJH) de mediciones texturales coinciden en 2.4 y 2.5, respectivamente, resaltando el carácter de red de la estructura de dichas fibras. La estructura mesoporosa y tipo hilo de las fibra de CNT es accesible a la infiltración de moléculas externas (líquidos o polímeros). En este trabajo se estudian los cambios en la estructura multiescala de las fibras de CNTs al interactuar con líquidos y polímeros. Los efectos de la densificación en la estructura de fibras secas de CNT son estudiados mediante WAXS/SAXS. El tratamiento de densificación junta los manojos de la fibra (los poros disminuyen de tamaño), resultando en un incremento de la densidad de la fibra. Sin embargo, los dominios estructurales correspondientes a la transferencia de esfuerzo mecánica y carga eléctrica en los nanotubos no son afectados durante este proceso de densificación; como consecuencia no se produce un efecto sustancial en las propiedades mecánicas y eléctricas. Mediciones de SAXS and fibra de CNT antes y después de infiltración de líquidos confirman la penetración de una gran cantidad de líquidos que llena los poros internos de la fibra pero no se intercalan entre capas de nanotubos adyacentes. La infiltración de cadenas poliméricas de bajo peso molecular tiende a expandir los manojos en la fibra e incrementar el ángulo de apertura de los poros. Los resultados de SAXS indican que la estructura interna de la fibra en términos de la organización de las capas de tubos y su orientación no es afectada cuando las muestras consisten en fibras infiltradas con polímeros de alto peso molecular. La cristalización de varios polímeros semicristalinos es acelerada por la presencia de fibras de CNTs alineados y produce el crecimiento de una capa transcristalina normal a la superficie de la fibra. Esto es observado directamente mediante microscopía óptica polarizada, y detectado mediante calorimetría DSC. Las lamelas en la capa transcristalina tienen orientación de la cadena polimérica paralela a la fibra y por lo tanto a los nanotubos, de acuerdo con los patrones de WAXS. Esta orientación preferencial se sugiere como parte de la fuerza impulsora en la nucleación. La nucleación del dominio cristalino polimérico en la superficie de los CNT no es epitaxial. Ocurre sin haber correspondencia entre las estructuras cristalinas del polímero y los nanotubos. Estas observaciones contribuyen a la compresión del fenómeno de nucleación en CNTs y otros nanocarbonos, y sientan las bases para el desarrollo de composites poliméricos de gran escala basados en fibra larga de CNTs alineados. ABSTRACT The assembly of carbon nanotubes into a macroscopic fibre material where they are preferentially aligned parallel to each other and to the fibre axis has resulted in a new class of high-performance fibres, which efficiently exploits the axial properties of the building blocks and has numerous applications. Long, continuous CNT fibres were produced in IMDEA Materials Institute by direct fibre spinning from a chemical vapour deposition reaction. These fibres have a complex hierarchical structure covering multiple length scales. One objective of this thesis is to reveal this structure by means of state-of-the-art techniques such as synchrotron X-ray diffraction, and to build a model to link the fibre structural elements. Texture and gas absorption measurements, using electron microscopy, wide angle and small angle X-ray scattering (WAXS/SAXS), and pore size distribution analysis by Barrett-Joyner-Halenda (BJH), indicate that the material has a mesoporous structure with a wide pore size distribution arising from the range of fibre bundle separation, and a high surface area _170m2/g. Fractal dimension values of 2.4_2.5 obtained from the SAXS and BJH measurements highlight the network structure of the fibre. Mesoporous and yarn-like structure of CNT fibres make them accessible to the infiltration of foreign molecules (liquid or polymer). This work studies multiscale structural changes when CNT fibres interact with liquids and polymers. The effects of densification on the structure of dry CNT fibres were measured by WAXS/SAXS. The densification treatment brings the fibre bundles closer (pores become smaller), leading to an increase in fibre density. However, structural domains made of the load and charge carrying nanotubes are not affected; consequently, it has no substantial effect on mechanical and electrical properties. SAXS measurements on the CNT fibres before and after liquid infiltration imply that most liquids are able to fill the internal pores but not to intercalate between nanotubes. Successful infiltration of low molecular weight polymer chains tends to expand the fibre bundles and increases the pore-opening angle. SAXS results indicate that the inner structure of the fibre, in terms of the nanotube layer arrangement and the fibre alignment, are not largely affected when infiltrated with polymers of relatively high molecular weight. The crystallisation of a variety of semicrystalline polymers is accelerated by the presence of aligned fibres of CNTs and results in the growth of a transcrystalline layer perpendicular to the fibre surface. This can be observed directly under polarised optical microscope, and detected by the exothermic peaks during differential scanning calorimetry. The discussion on the driving forces for the enhanced nucleation points out the preferential chain orientation of polymer lamella with the chain axis parallel to the fibre and thus to the nanotubes, which is confirmed by two-dimensional WAXS patterns. A non-epitaxial polymer crystal growth habit at the CNT-polymer interface is proposed, which is independent of lattice matching between the polymer and nanotubes. These findings contribute to the discussion on polymer nucleation on CNTs and other nanocarbons, and their implication for the development of large polymer composites based on long and aligned fibres of CNTs.
Resumo:
If only Fluid Mechanics aspects are considered, the configuration appearing in the floating zone technique for crystal growth can be modelled as a mass of liquid spanning between two solid rods. Besides, if now the influence of temperature gradients and heat flow are not considered, the simplest fluid model consists of an isothermal liquid mass of constant properties (density and surface tension) held by capillary forces between two solid disks placed a distance L apart: the so called liquid bridge. As it is well known, if both supporting disks were parallel, coaxial and of the same diameter, 2R, the volume of liquid, V, were equal to that of a cylinder of the same L and R (V=KR~L) and no body forces were acting on the liquid column, the fluid configuration (under these conditions of cylindrical shape) will become unstable when the distance between the disks equals the length of the circumference of the supporting disks (L=2KR, the so-called Rayleigh stability limit). One should be aware that the Rayleigh stability limit can be dramatically modified when the geometry differs from the above described cylinder (due to having non-coaxial disks, different diameter disks, liquid volume different from the cylindrical one, etc) or when other external effects like accelerations either axial or lateral are considered. In this paper the stability limits of liquid bridges considering different types of perturbations are reviewed.
Resumo:
No presente trabalho foram avaliados processos alternativos de dessalinização visando a recuperação e reuso da água contida em salmouras concentradas, sendo o processo de cristalização assistida por destilação por membranas (MDC) investigado com profundidade. Foi desenvolvido um modelo diferencial para o processo de destilação por membranas por contato direto (DCMD), contemplando métodos termodinâmicos rigorosos para sistemas aquosos de eletrólitos fortes, bem como mecanismos de transferência de calor e massa e efeitos de polarização de temperatura e concentração característicos deste processo de separação. Com base em simulações realizadas a partir do modelo matemático assim desenvolvido, foram investigados os principais parâmetros que influenciam o projeto de um módulo de membranas para DCMD. O modelo foi posteriormente estendido com equações de balanço de massa e energia adicionais para incluir a operação de cristalização e desta forma representar o processo de MDC. De posse dos resultados das simulações e do modelo estendido, foi desenvolvido um método hierárquico para o projeto de processos de MDC, com o objetivo de conferir características de rastreabilidade e repetibilidade a esta atividade. Ainda a partir do modelo MDC foram discutidos aspectos importantes em MDC como a possibilidade de nucleação e crescimento de cristais sobre a superfície das membranas, bem como o comportamento do processo com sais com diferentes características de solubilidade e largura da zona metaestável. Verificou-se que para sais cuja solubilidade varia muito pouco com a temperatura e que possuem zona metaestável com pequena largura, caso do NaCl, a operação com resfriamento no cristalizador não é viável pois aumenta excessivamente o consumo energético do processo, sendo nesses casos preferível a operação \"isotérmica\" - sem resfriamento no cristalizador - e o convívio com a possibilidade de nucleação no interior do módulo. No extremo oposto, observou-se que para sais com grande variabilidade da solubilidade com a temperatura, um pequeno resfriamento no cristalizador é suficiente para garantir condições de subsaturação no interior do módulo, sem grande ônus energético para o processo. No caso de sais com pequena variabilidade da solubilidade com a temperatura, mas com largura da zona metaestável elevada, existe certo ônus energético para a operação com resfriamento do cristalizador, porém não tão acentuado como no caso de sais com zona metaestável estreita. Foi proposto um fluxograma alternativo para o processo de MDC, onde foi introduzido um circuito de pré-concentração da alimentação antes do circuito de cristalização, para o caso de alimentação com soluções muito diluídas. Este esquema proporcionou um aumento do fluxo permeado global do processo e consequentemente uma redução na área total de membrana requerida. Verificou-se que através do processo com préconcentração da alimentação de 5% até 10% em massa - no caso de dessalinização de uma solução de NaCl - foi possível reduzir-se a área total da membrana em 27,1% e o consumo energético específico do processo em 10,6%, quando comparado ao processo sem pré-concentração. Foram desenvolvidas ferramentas úteis para o projeto de processos de dessalinização por MDC em escala industrial.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest.