749 resultados para Counsuela Askew
Resumo:
We present a search for the standard model Higgs boson in final states with a charged lepton (electron or muon), missing transverse energy, and two or three jets, at least one of which is identified as a b-quark jet. The search is primarily sensitive to WH→ νbb̄ production and uses data corresponding to 9.7fb -1 of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp̄ Collider at √s=1.96TeV. We observe agreement between the data and the expected background. For a Higgs boson mass of 125 GeV, we set a 95% C.L. upper limit on the production of a standard model Higgs boson of 5.2×σ SM, where σ SM is the standard model Higgs boson production cross section, while the expected limit is 4.7×σ SM. © 2012 American Physical Society.
Resumo:
The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 pb-1 of data collected in pp collisions at s = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV/c is above 95% over the whole region of pseudorapidity covered by the CMS muon system, < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeVc is higher than 90% over the full η range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100GeV/c and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV/c. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation. © 2012 IOP Publishing Ltd and Sissa Medialab srl.
Resumo:
We present the first search for new phenomena in Zγ final states with large missing transverse energy using data corresponding to an integrated luminosity of 6.2fb -1 collected with the D0 experiment in pp̄ collisions at √s=1.96TeV. This signature is predicted in gauge-mediated supersymmetry-breaking models, where the lightest neutralino χ 10 is the next-to-lightest supersymmetric particle and is produced in pairs, possibly through decay from heavier supersymmetric particles. The χ 10 can decay either to a Z boson or a photon and an associated gravitino that escapes detection. We exclude this model at the 95% C.L. for supersymmetry-breaking scales of Λ<87TeV. © 2012 American Physical Society.
Resumo:
We present a measurement of the semileptonic mixing asymmetry for B0 mesons, asld, using two independent decay channels: B0→μ +D -X, with D -→K +π -π -; and B0→μ +D *-X, with D * -→D ̄0π -, D ̄0→ K +π - (and charge conjugate processes). We use a data sample corresponding to 10.4fb -1 of pp̄ collisions at √s=1.96TeV, collected with the D0 experiment at the Fermilab Tevatron collider. We extract the charge asymmetries in these two channels as a function of the visible proper decay length of the B0 meson, correct for detector-related asymmetries using data-driven methods, and account for dilution from charge-symmetric processes using Monte Carlo simulation. The final measurement combines four signal visible proper decay length regions for each channel, yielding asld=[0.68±0.45(stat)±0.14(syst)]%. This is the single most precise measurement of this parameter, with uncertainties smaller than the current world average of B factory measurements. © 2012 American Physical Society.
Resumo:
The top quark is the heaviest known elementary particle, with a mass about 40 times larger than the mass of its isospin partner, the bottom quark. It decays almost 100% of the time to a W boson and a bottom quark. Using top-antitop pairs at the Tevatron proton-antiproton collider, the CDF and D0 Collaborations have measured the top quark's mass in different final states for integrated luminosities of up to 5.8fb -1. This paper reports on a combination of these measurements that results in a more precise value of the mass than any individual decay channel can provide. It describes the treatment of the systematic uncertainties and their correlations. The mass value determined is 173.18±0.56(stat)±0.75(syst)GeV or 173.18±0.94GeV, which has a precision of ±0.54%, making this the most precise determination of the top-quark mass. © 2012 American Physical Society.
Resumo:
We present a measurement of the average value of a new observable at hadron colliders that is sensitive to QCD dynamics and to the strong coupling constant, while being only weakly sensitive to parton distribution functions. The observable measures the angular correlations of jets and is defined as the number of neighboring jets above a given transverse momentum threshold which accompany a given jet within a given distance δR in the plane of rapidity and azimuthal angle. The ensemble average over all jets in an inclusive jet sample is measured and the results are presented as a function of transverse momentum of the inclusive jets, in different regions of δR and for different transverse momentum requirements for the neighboring jets. The measurement is based on a data set corresponding to an integrated luminosity of 0.7 fb -1 collected with the D0 detector at the Fermilab Tevatron Collider in pp- collisions at s=1.96 TeV. The results are well described by a perturbative QCD calculation in next-to-leading order in the strong coupling constant, corrected for non-perturbative effects. From these results, we extract the strong coupling and test the QCD predictions for its running over a range of momentum transfers of 50-400 GeV. © 2012 Elsevier B.V.
Resumo:
We investigate the decay Bs0→J/ψK +K - for invariant masses of the K +K - pair in the range 1.35
Resumo:
Results are presented from a search for heavy bottom-like quarks, pair-produced in pp collisions at √s = 7TeV, undertaken with the CMS experiment at the LHC. The b′ quarks are assumed to decay exclusively to tW. The b′b̄′ → tW-t̄W+ process can be identified by its distinctive signatures of three leptons or two leptons of same charge, and at least one b-quark jet. Using a data sample corresponding to an integrated luminosity of 4.9 fb-1, observed events are compared to the standard model background predictions, and the existence of b′ quarks having masses below 611 GeV/c2 is excluded at 95% confidence level.
Resumo:
A model-independent search for the production of heavy resonances decaying into top-antitop quark pairs is presented. The search is based on events containing one lepton (muon or electron) and at least two jets selected from data samples corresponding to an integrated luminosity of 4.4-5.0 fb -1 collected in pp collisions at √s =7 TeV. Results are presented from the combination of two dedicated searches optimized for boosted production and production at threshold. No excess of events is observed over the expected yield from the standard model processes. Topcolor Z′ bosons with narrow (wide) width are excluded at 95% confidence level for masses below 1.49 (2.04) TeV and an upper limit of 0.3 (1.3) pb or lower is set on the production cross section times branching fraction for resonance masses above 1 TeV. Kaluza-Klein excitations of a gluon with masses below 1.82 TeV (at 95% confidence level) in the Randall-Sundrum model are also excluded, and an upper limit of 0.7 pb or lower is set on the production cross section times branching fraction for resonance masses above 1 TeV.[Figure not available: See fulltext.] © 2012 CERN for the benefit of the CMS collaboration.
Resumo:
A measurement of the single-top-quark t-channel production cross section in pp collisions at √s=7 TeV with the CMS detector at the LHC is presented. Two different and complementary approaches have been followed. The first approach exploits the distributions of the pseudorapidity of the recoil jet and reconstructed top-quark mass using background estimates determined from control samples in data. The second approach is based on multivariate analysis techniques that probe the compatibility of the candidate events with the signal. Data have been collected for the muon and electron final states, corresponding to integrated luminosities of 1.17 and 1.56 fb-1, respectively. The single-top-quark production cross section in the t-channel is measured to be 67.2±6.1 pb, in agreement with the approximate next-to-next-to-leading- order standard model prediction. Using the standard model electroweak couplings, the CKM matrix element |V tb| is measured to be 1.020 ± 0.046 (meas.) ± 0.017 (theor.). © 2012 CERN for the benefit of the CMS collaboration.
Resumo:
Results are presented from a search for third-generation leptoquarks and scalar bottom quarks in a sample of proton-proton collisions at √s=7Tev collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.7 fb-1. A scenario where the new particles are pair produced and each decays to a b quark plus a tau neutrino or neutralino is considered. The number of observed events is found to be in agreement with the standard model prediction. Upper limits are set at 95% confidence level on the production cross sections. Leptoquarks with masses below ~450 GeV are excluded. Upper limits in the mass plane of the scalar quark and neutralino are set such that scalar bottom quark masses up to 410 GeV are excluded for neutralino masses of 50 GeV. © 2012 CERN for the benefit of CMS collaboration.
Resumo:
The mass of the top quark is measured using a sample of t̄t candidate events with one electron or muon and at least four jets in the final state, collected by CMS in pp collisions at √s =7 TeV at the LHC. A total of 5174 candidate events is selected from data corresponding to an integrated luminosity of 5.0 fb-1. For each event the mass is reconstructed from a kinematic fit of the decay products to a t̄t hypothesis. The top-quark mass is determined simultaneously with the jet energy scale (JES), constrained by the known mass of the W boson in q̄q decays, to be 173.49 ± 0.43 (stat. + JES) ±0.98 (syst.) GeV. © 2012 CERN for the benefit of the CMS collaboration.
Resumo:
A search for a doubly-charged Higgs boson in pp collisions at √s=7 TeV is presented. The data correspond to an integrated luminosity of 4. 9 fb-1, collected by the CMS experiment at the LHC. The search is performed using events with three or more isolated charged leptons of any flavor, giving sensitivity to the decays of pair-produced triplet components Φ++Φ--, and Φ++Φ- from associated production. No excess is observed compared to the background prediction, and upper limits at the 95 % confidence level are set on the Φ++ production cross section, under specific assumptions on its branching fractions. Lower bounds on the Φ++ mass are reported, providing significantly more stringent constraints than previously published limits. © 2012 CERN for the benefit of the CMS collaboration.
Resumo:
The anisotropy of the azimuthal distributions of charged particles produced in √sNN=2.76 TeV PbPb collisions is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter, v2, defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. The anisotropy is presented as a function of transverse momentum (pT), pseudorapidity (η) over a broad kinematic range, 0.3
Resumo:
A measurement of the forward-backward asymmetry (AFB) of Drell-Yan lepton pairs in pp collisions at s=7TeV is presented. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 5fb-1. The asymmetry is measured as a function of dilepton mass and rapidity in the dielectron and dimuon channels. Combined results from the two channels are presented, and are compared with the standard model predictions. The AFB measurement in the dimuon channel and the combination of the two channels are the first such results obtained at a hadron collider. The measured asymmetries are consistent with the standard model predictions. © 2012 CERN.