1000 resultados para Corps humain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La présente thèse s'intitule "Développent et Application des Méthodologies Computationnelles pour la Modélisation Qualitative". Elle comprend tous les différents projets que j'ai entrepris en tant que doctorante. Plutôt qu'une mise en oeuvre systématique d'un cadre défini a priori, cette thèse devrait être considérée comme une exploration des méthodes qui peuvent nous aider à déduire le plan de processus regulatoires et de signalisation. Cette exploration a été mue par des questions biologiques concrètes, plutôt que par des investigations théoriques. Bien que tous les projets aient inclus des systèmes divergents (réseaux régulateurs de gènes du cycle cellulaire, réseaux de signalisation de cellules pulmonaires) ainsi que des organismes (levure à fission, levure bourgeonnante, rat, humain), nos objectifs étaient complémentaires et cohérents. Le projet principal de la thèse est la modélisation du réseau de l'initiation de septation (SIN) du S.pombe. La cytokinèse dans la levure à fission est contrôlée par le SIN, un réseau signalant de protéines kinases qui utilise le corps à pôle-fuseau comme échafaudage. Afin de décrire le comportement qualitatif du système et prédire des comportements mutants inconnus, nous avons décidé d'adopter l'approche de la modélisation booléenne. Dans cette thèse, nous présentons la construction d'un modèle booléen étendu du SIN, comprenant la plupart des composantes et des régulateurs du SIN en tant que noeuds individuels et testable expérimentalement. Ce modèle utilise des niveaux d'activité du CDK comme noeuds de contrôle pour la simulation d'évènements du SIN à différents stades du cycle cellulaire. Ce modèle a été optimisé en utilisant des expériences d'un seul "knock-out" avec des effets phénotypiques connus comme set d'entraînement. Il a permis de prédire correctement un set d'évaluation de "knock-out" doubles. De plus, le modèle a fait des prédictions in silico qui ont été validées in vivo, permettant d'obtenir de nouvelles idées de la régulation et l'organisation hiérarchique du SIN. Un autre projet concernant le cycle cellulaire qui fait partie de cette thèse a été la construction d'un modèle qualitatif et minimal de la réciprocité des cyclines dans la S.cerevisiae. Les protéines Clb dans la levure bourgeonnante présentent une activation et une dégradation caractéristique et séquentielle durant le cycle cellulaire, qu'on appelle communément les vagues des Clbs. Cet évènement est coordonné avec la courbe d'activation inverse du Sic1, qui a un rôle inhibitoire dans le système. Pour l'identification des modèles qualitatifs minimaux qui peuvent expliquer ce phénomène, nous avons sélectionné des expériences bien définies et construit tous les modèles minimaux possibles qui, une fois simulés, reproduisent les résultats attendus. Les modèles ont été filtrés en utilisant des simulations ODE qualitatives et standardisées; seules celles qui reproduisaient le phénotype des vagues ont été gardées. L'ensemble des modèles minimaux peut être utilisé pour suggérer des relations regulatoires entre les molécules participant qui peuvent ensuite être testées expérimentalement. Enfin, durant mon doctorat, j'ai participé au SBV Improver Challenge. Le but était de déduire des réseaux spécifiques à des espèces (humain et rat) en utilisant des données de phosphoprotéines, d'expressions des gènes et des cytokines, ainsi qu'un réseau de référence, qui était mis à disposition comme donnée préalable. Notre solution pour ce concours a pris la troisième place. L'approche utilisée est expliquée en détail dans le dernier chapitre de la thèse. -- The present dissertation is entitled "Development and Application of Computational Methodologies in Qualitative Modeling". It encompasses the diverse projects that were undertaken during my time as a PhD student. Instead of a systematic implementation of a framework defined a priori, this thesis should be considered as an exploration of the methods that can help us infer the blueprint of regulatory and signaling processes. This exploration was driven by concrete biological questions, rather than theoretical investigation. Even though the projects involved divergent systems (gene regulatory networks of cell cycle, signaling networks in lung cells), as well as organisms (fission yeast, budding yeast, rat, human), our goals were complementary and coherent. The main project of the thesis is the modeling of the Septation Initiation Network (SIN) in S.pombe. Cytokinesis in fission yeast is controlled by the SIN, a protein kinase signaling network that uses the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this thesis, we report the construction of an extended, Boolean model of the SIN, comprising most SIN components and regulators as individual, experimentally testable nodes. The model uses CDK activity levels as control nodes for the simulation of SIN related events in different stages of the cell cycle. The model was optimized using single knock-out experiments of known phenotypic effect as a training set, and was able to correctly predict a double knock-out test set. Moreover, the model has made in silico predictions that have been validated in vivo, providing new insights into the regulation and hierarchical organization of the SIN. Another cell cycle related project that is part of this thesis was to create a qualitative, minimal model of cyclin interplay in S.cerevisiae. CLB proteins in budding yeast present a characteristic, sequential activation and decay during the cell cycle, commonly referred to as Clb waves. This event is coordinated with the inverse activation curve of Sic1, which has an inhibitory role in the system. To generate minimal qualitative models that can explain this phenomenon, we selected well-defined experiments and constructed all possible minimal models that, when simulated, reproduce the expected results. The models were filtered using standardized qualitative ODE simulations; only the ones reproducing the wave-like phenotype were kept. The set of minimal models can be used to suggest regulatory relations among the participating molecules, which will subsequently be tested experimentally. Finally, during my PhD I participated in the SBV Improver Challenge. The goal was to infer species-specific (human and rat) networks, using phosphoprotein, gene expression and cytokine data and a reference network provided as prior knowledge. Our solution to the challenge was selected as in the final chapter of the thesis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plus de 300 millions de personnes dans le monde souffrent de l'asthme. L'asthme est une maladie inflammatoire chronique des voies respiratoires caractérisée par des symptômes variables et récurrents, une obstruction bronchique réversible et des bronchospasmes. Les symptômes communs incluent une respiration sifflante, de la toux, une oppression thoracique et de la dyspnée. Normalement, la maladie commence à se manifester pendant l'enfance. Pourtant, facteurs génétiques héréditaires et événements environnementaux survenant au cours de la petite enfance sont responsables de sa manifestation, indiquant que le développement de la maladie est lié à des événements qui se produisent bien avant son déclenchement. L'infection respiratoire virale aiguë constitue un de ces facteurs environnementaux jouant un rôle prépondérant. Un des virus les plus communs est le virus respiratoire syncytial (VRS), qui infecte presque tous les enfants avant l'âge de 2 ans. Ce virus, s'il infecte des tout-petits, peut en effet provoquer une bronchiolite aiguë, un phénomène qui a été épidémiologiquement lié à l'apparition d'asthme plus tard dans la vie. Dans le premier chapitre de cette thèse, nous avons étudié, chez la souris, comment une infection avec le VRS influe sur l'asthme allergique. Nous avons constaté que seule l'infection des souris à l'état de nouveau-né prédispose à un asthme allergique plus sévère chez l'adulte. En effet, si des souris adultes étaient infectées, elles étaient protégées contre l'apparition des symptômes asthmatiques. Cela nous a mené à investiguer les mécanismes immunitaires spécifiques durant cette courte période du début de la vie. Deux événements se produisent en parallèle au cours de la petite enfance: (1) Le système immunitaire, qui est encore immature immédiatement après la naissance, commence à se développer pour être en mesure de jouer son rôle protecteur contre les agents infectieux. (2) Le corps, y compris les poumons, est colonisé par des bactéries commensales, qui vivent en symbiose avec leur hôte humain. Chez l'adulte, ces bactéries sont connues pour influencer notre système immunitaire, l'éduquant à générer des réponses immunitaires adéquates et efficaces. Dans la deuxième partie de cette thèse, nous avons voulu déterminer si ces bactéries symbiotiques étaient impliquées dans l'éducation du système immunitaire du nouveau-né et quelles conséquences cela pourrait avoir sur les réponses immunitaires engendrées par ce dernier. Pour étudier l'effet de ces bactéries symbiotiques, nous avons utilisé des souris stériles, en d'autres termes des souris qui n'hébergent pas ces bactéries symbiotiques. En comparant ces souris stériles à des souris qui abritent une flore microbienne normale, nous avons constaté que les bactéries symbiotiques sont vitales pour la bonne éducation du système immunitaire du nouveau-né. Nous avons démontré que le contact direct des cellules immunitaires avec la flore microbienne dans les poumons modifie le phénotype de ces cellules immunitaires, ce qui change probablement leur réaction au cours de réponses immunitaires. Nous avons donc vérifié si l'éducation immunitaire induite par cette microflore est importante pour prévenir les maladies pulmonaires telles que l'asthme allergique, affections qui sont causées par une réaction excessive du système immunitaire envers des agents inoffensifs. En effet, nous avons observé que le processus de maturation du système immunitaire néonatal, lequel a été déclenché et façonné par la flore microbienne, est important pour éviter une réaction asthmatique exagérée chez la souris adulte. Ce phénomène est dû aux lymphocytes T régulateurs. Ces cellules, dont la présence est induite dans les poumons, ont des capacités immunosuppressives et atténuent donc les réponses immunitaires pour prévenir une inflammation excessive. En conclusion, nous avons montré dans cette thèse que la colonisation par des bactéries symbiotiques tôt dans la vie est un événement décisif pour la maturation du système immunitaire et pour prévenir le développement de l'asthme. Dans l'avenir, il serait intéressant de découvrir quelles bactéries sont présentes dans les poumons du nouveau-né et lesquelles sont directement impliquées dans ce processus de maturation immunitaire. Une prochaine étape serait alors de favoriser la présence de ces bactéries au début de la vie au moyen d'un traitement avec des agents pré- ou probiotiques, ce qui pourrait éventuellement contribuer à une prévention précoce du développement de l'asthme. -- L'asthme est une maladie chronique inflammatoire des voies respiratoires affectant près de 300 millions d'individus dans le monde. Bien que les traits caractéristiques du phénotype asthmatique s'établissent généralement pendant l'enfance, la prédisposition au développement de la maladie est intimement liée à des événements survenant durant la petite enfance, comme le sont par exemple les infections virales respiratoires aiguës. Les mécanismes par lesquels ces événements provoquent un dysfonctionnement immunitaire et, par conséquent, conduisent au développement de l'asthme n'ont pas encore été entièrement décelés. La dysbiose du microbiote des voies respiratoires a été récemment associes au phénotype asthmatique, touisTcis, la cuûoboiatioî! d un lien cause à effet entre la dysbiose microbienne et l'apparition des symptômes asthmatiques reste à être démontrée. Dans cette thèse, nous avons étudié le rôle que joue la colonisation microbienne des voies respiratoires au cours de la petite enfance dans la maturation du système immunitaire ainsi que dans la protection contre l'inflammation pulmonaire de type allergique. Nous avons de surcroît développé un modèle expérimental pour comprendre comment les infections virales respiratoires interfèrent avec ce processus. Dans la première partie de cette thèse, nous avons évalué l'effet d'infections causées par le virus respiratoire syncytial (VRS) sur le développement de l'asthme. En accord avec des études épidémiologiques, nous avons constaté qu'une infection au VRS lors de la période néonatale exacerbait les réponses pulmonaires allergiques ultérieures. Par contraste, une infection à l'âge adulte avait un effet protecteur. Nous avons ainsi démontré que l'influence d'une infection à VRS sur l'issue et la sévérité de l'asthme respiratoire était strictement dépendante de l'âge. Ces résultats nous ont conduit à émettre l'hypothèse que des différences dans le phénotype homéostatique des cellules immunitaires pourraient être responsables de ces disparités liées à l'âge. Par conséquent, dans la deuxième partie de cette thèse, nous avons suivi et caractérisé le processus de maturation des cellules immunitaires dans les poumons du nouveau-né en condition d'homéostasie. Nous avons découvert que leur phénotype change de façon dynamique pendant le développement néonatal et que la colonisation par des microbes était déterminante pour la maturation des cellules immunitaires dans les poumons. Dans la dernière partie de cette thèse, nous avons démontré comment le microbiote pulmonaire éduque le développement immunitaire durant la période néonatale l'orientant de manière à induire une tolérance face aux aéroallergènes. Nous avons découvert que la colonisation microbienne des voies respiratoires provoque une expression transitoire de PD-L1 sur les cellules dendritiques (CD) pulmonaires du type CD11b+ dans les deux premières semaines de la vie. Cet événement engendre par la suite la génération de lymphocytes T régulateurs (TREG) dans les poumons, lesquels sont responsables de la protection contre une réponse inflammatoire allergique exagérée chez la souris adulte. Par conséquent, nous proposons un rôle pivot de la maturation immunitaire induite par le microbiote pulmonaire dans l'établissement de la tolérance aux aéroallergènes. En conclusion, les résultats présentés dans cette thèse fournissent de nouveaux indices révélant comment des événements se produisant lors de la petite enfance peuvent façonner les réponses du système immunitaire dirigées contre les allergènes et soulignent le rôle central joué par le microbiote pulmonaire dans l'édification d'une réponse immunitaire équilibrée. En résumé, notre travail met en évidence le microbiote pulmonaire comme étant une cible potentielle pour la prévention de certaines maladies respiratoires. -- Asthma is a chronic inflammatory disorder of the respiratory tract and affects approximately 300 million individuals world-wide. Although the asthmatic phenotype commonly establishes during childhood, predisposition towards disease development has been linked to events in early infancy, such as severe respiratory viral infections. However, the mechanisms by which these events cause immune dysfunction and, therefore, lead to the development of asthma have yet to be fully deciphered. Dysbiosis of the airway microbiota has recently been associated with the asthmatic phenotype; however, conclusive evidence for a causal link between microbial dysbiosis in the ail ways and asthma development is still missing. In this thesis we investigated the role of early-life microbial airway colonization in immune maturation and the protection against allergic airway inflammation and established an experimental model to address how respiratory viral infections interfere in this process. In the first part of this thesis we evaluated the effect of Respiratory syncytial virus (RSV) infections on the development of asthma. In concurrence with epidemiological studies, we found that neonatal infection exacerbated subsequent allergic airway inflammation. In contrast, adult infection was protective in the same context. Thus, we could demonstrate that the influence of RSV infection on subsequent allergic airway responses was strictly age-dependent. These findings led us to the hypothesis that differences in the homeostatic phenotype of immune cells could be responsible for the age-related disparities seen within the context of RSV. Therefore, in a second part of this thesis, we followed the process of homeostatic immune cell maturation in the neonatal lung. Immune cell phenotypes changed dynamically during neonatal development. We discovered that the colonization with microbes was central to the maturation of immune cells in the lung. In the last part of this thesis, we demonstrated how microbiota-driven immune development during the neonatal period induces tolerance against aeroallergens. We discovered that microbial colonization led to a transient programmed death-ligand (PD-L) 1 expression on CD11b+ pulmonary dendritic cells (DCs) during the first two weeks of life. This in turn induced regulatory T (TREG) cells in the lung, which were responsible for the protection against exaggerated allergic airway inflammation in adult mice. Thus, we propose a key role for microbiota-driven immune maturation in the establishment of tolerance towards aeroallergens. In conclusion, the results presented in this thesis provide new insights into how early-life events shape pulmonary immune responses towards allergens and suggest the airway microbiota as a key player in establishing a balanced immune response. Overall, our work highlights the airway microbiota as potential target for disease prevention.