1000 resultados para Coromines, Joan, 1905-1997
Resumo:
The Leopold Center was established by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. Its mandated missions are to identify impacts of agricultural practices, contribute to the development of profitable farming systems that conserve natural resources, and cooperate with Iowa State University Extension to inform the public of new findings.Information for this report was compiled by Leopold Center staff with the help of its researchers and educators who are committed to improving Iowa agriculture and the lives of Iowans.
Resumo:
The purpose of this document is to provide the General Assembly with information related to FY General Fund estimated receipts and the Governor’s recommendations. This information provides an overall summary of the State budget and is intended to help the General Assembly take a proactive approach toward the budgeting process.
Resumo:
The purpose of this document is to provide the General Assembly with information related to FY General Fund estimated receipts and the Governor’s recommendations. This information provides an overall summary of the State budget and is intended to help the General Assembly take a proactive approach toward the budgeting process.
Resumo:
Comprehensive Annual Financial Report For University of Northern Iowa.
Resumo:
Comprehensive Annual Financial Report For University of Northern Iowa.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Leopold Center was created by the Iowa Legislature as part of the Iowa Groundwater Protection Act of 1987. The Leopold Center believes contribute to a healthy ways of thinking about markets for Iowa farmers, a better understanding of local ecosystems, public policies and economic practices, and partnerships with consumers.
Resumo:
The Marsh Rainbow Arch Bridge is a patented bridge design by James Barney Marsh, a graduate of Iowa State College of Agriculture and Mechanic Arts (now Iowa State University). Around the turn of the 20th Century, reinforced concrete was introduced in Iowa as an important new bridge construction material. Marsh used the new technology to encased steel truss arches in concrete to produce a sturdy yet esthetic arch bridge. This booklet touches on the important aspects of Marsh's life, business and industrial contributions.
Resumo:
Les basíliques paleocristianes del suburbi occidental de Tarraco. El temple septentrional i el complex martirial de Sant Fructuós és el resultat de 10 anys d’investigació desenvolupada al voltant del sector septentrional del Conjunt Paleocristià del Francolí, originada arran de les excavacions efectuades entre els anys 1994 i 1997 a la zona on actualment s’ubica el Parc Central. L’extraordinària importància del jaciment va despertar de seguida l’interès de l’autor, Jordi López, i de la comunitat científica, tant pel valor mateix de les restes com per la seva relació amb l’extensa necròpolis paleocristiana que al llarg de diverses campanyes havia excavat el Dr. Mn. Joan Serra i Vilaró. Es tracta d’una presentació de les últimes investigacions desenvolupades a l’ampli conjunt funerari i cristià del Francolí, al suburbium occidental de Tarraco. Consta de dos volums. El primer està estructurat en tres grans parts. Primerament, la presentació dels resultats dels treballs d’excavació duts a terme entre els anys 1994 i 1997 al sector septentrional del centre de culte cristià del Francolí, que inclou un estudi arquitectònic exhaustiu de la nova basílica excavada. En segon lloc, una revisió de les diferents intervencions desenvolupades en el sector meridional a principi de segle XX per Mn. Serra Vilaró i dels treballs dels anys 70 de M. D. del Amo, amb la proposta d’una nova interpretació arquitectònica de l’antiga basílica i de l’edifici situat al sud d’aquesta. I, finalment, una exposició general de l’evolució d’aquest sector occidental del suburbium de la ciutat, que reflecteix un especial dinamisme entre els segles IV i V dC, moment de màxima expansió de les grans àrees funeràries del segle III dC i de la monumentalització d’un gran centre de culte martirial al Francolí. El text està il·lustrat amb una àmplia documentació gràfica (plantes, seccions, fotografia, reconstruccions tridimensionals). A més, inclou 22 pàgines de conclusions amb la corresponent traducció a l’anglès. El segon volum conté set annexos específics: la relació d’unitats estratigràfiques, un inventari de materials, la descripció dels sepulcres, l’estudi osteoarqueològic i paleopatològic de les restes humanes, una anàlisi epigràfica, una de numismàtica i una última d’escultòrica.
Resumo:
This Plan Reading Course was developed by the Department of Civil and Construction Engineering of Iowa State University under contract with the Iowa Highway Research Board, Project HR-324. It is intended to be an instructional tool for Iowa DOT, county and municipal employees within the state of Iowa. Under this contract, a previous Plan Reading Course, prepared for the Iowa State Highway Commission in 1965, has been completely revised using a new format, new plans, updated specifications, and new material. This course is a self-taught course consisting of two parts; Highway Plans, and Bridge and Culvert plans. Each part consists of a self-instruction book, a set of plans, a question booklet, and an answer booklet. This is the self-instruction book for the Bridge and Culvert Plans part of the course. The example structures included in this part of the course are a prestressed concrete beam bridge and a reinforced concrete box culvert.
Resumo:
It is generally accepted that high density polyethylene pipe (HDPE) performs well under live loads with shallow cover, provided the backfill is well compacted. Although industry standards require carefully compacted backfill, poor inspection and/or faulty construction may result in soils that provide inadequate restraint at the springlines of the pipes thereby causing failure. The objectives of this study were: 1) to experimentally define a lower limit of compaction under which the pipes perform satisfactorily, 2) to quantify the increase in soil support as compaction effort increases, 3) to evaluate pipe response for loads applied near the ends of the buried pipes, 4) to determine minimum depths of cover for a variety of pipes and soil conditions by analytically expanding the experimental results through the use of the finite element program CANDE. The test procedures used here are conservative especially for low-density fills loaded to high contact stresses. The failures observed in these tests were the combined effect of soil bearing capacity at the soil surface and localized wall bending of the pipes. Under a pavement system, the pipes' performance would be expected to be considerably better. With those caveats, the following conclusions are drawn from this study. Glacial till compacted to 50% and 80% provides insufficient support; pipe failureoccurs at surface contact stresses lower than those induced by highway trucks. On the other hand, sand backfill compacted to more than 110 pcf (17.3 kN/m3) is satisfactory. The failure mode for all pipes with all backfills is localized wall bending. At moderate tire pressures, i.e. contact stresses, deflections are reduced significantly when backfill density is increased from about 50 pcf (7.9 kN/m^3) to 90 pcf (14.1 kN/m^3). Above that unit weight, little improvement in the soil-pipe system is observed. Although pipe stiffness may vary as much as 16%, analyses show that backfill density is more important than pipe stiffness in controlling both deflections at low pipe stresses and at the ultimate capacity of the soil-pipe system. The rate of increase in ultimate strength of the system increases nearly linearly with increasing backfill density. When loads equivalent to moderate tire pressures are applied near the ends of the pipes, pipe deflections are slighly higher than when loaded at the center. Except for low density glacial till, the deflections near the ends are not excessive and the pipes perform satisfactorily. For contact stresses near the upper limit of truck tire pressures and when loaded near the end, pipes fail with localized wall bending. For flowable fill backfill, the ultimate capacity of the pipes is nearly doubled and at the upper limit of highway truck tire pressures, deflections are negligible. All pipe specimens tested at ambient laboratory room temperatures satisfied AASHTO minimum pipe stiffness requirements at 5% deflection. However, nearly all specimens tested at elevated pipe surface temperatures, approximately 122°F (50°C), failed to meet these requirements. Some HDPE pipe installations may not meet AASHTO minimum pipe stiffness requirements when installed in the summer months (i.e. if pipe surface temperatures are allowed to attain temperatures similar to those tested here). Heating of any portion of the pipe circumference reduced the load carrying capacity of specimens. The minimum soil cover depths, determined from the CANOE analysis, are controlled by the 5% deflection criterion. The minimum soil cover height is 12 in. (305 mm). Pipes with the poor silt and clay backfills with less than 85% compaction require a minimum soil cover height of 24 in. (610 mm). For the sand at 80% compaction, the A36 HDPE pipe with the lowest moment of inertia requires a minimum of 24 in. (610 mm) soil cover. The C48 HDPE pipe with the largest moment of inertia and all other pipes require a 12 in. (305 mm) minimum soil cover.