870 resultados para Contrast-to-noise ratio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-D Discrete Cosine Transform (DCT) is widely used as the core of digital image and video compression. In this paper, we present a novel DCT architecture that allows aggressive voltage scaling by exploiting the fact that not all intermediate computations are equally important in a DCT system to obtain "good" image quality with Peak Signal to Noise Ratio(PSNR) > 30 dB. This observation has led us to propose a DCT architecture where the signal paths that are less contributive to PSNR improvement are designed to be longer than the paths that are more contributive to PSNR improvement. It should also be noted that robustness with respect to parameter variations and low power operation typically impose contradictory requirements in terms of architecture design. However, the proposed architecture lends itself to aggressive voltage scaling for low-power dissipation even under process parameter variations. Under a scaled supply voltage and/or variations in process parameters, any possible delay errors would only appear from the long paths that are less contributive towards PSNR improvement, providing large improvement in power dissipation with small PSNR degradation. Results show that even under large process variation and supply voltage scaling (0.8V), there is a gradual degradation of image quality with considerable power savings (62.8%) for the proposed architecture when compared to existing implementations in 70 nm process technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a design methodology for algorithm/architecture co-design of a voltage-scalable, process variation aware motion estimator based on significance driven computation. The fundamental premise of our approach lies in the fact that all computations are not equally significant in shaping the output response of video systems. We use a statistical technique to intelligently identify these significant/not-so-significant computations at the algorithmic level and subsequently change the underlying architecture such that the significant computations are computed in an error free manner under voltage over-scaling. Furthermore, our design includes an adaptive quality compensation (AQC) block which "tunes" the algorithm and architecture depending on the magnitude of voltage over-scaling and severity of process variations. Simulation results show average power savings of similar to 33% for the proposed architecture when compared to conventional implementation in the 90 nm CMOS technology. The maximum output quality loss in terms of Peak Signal to Noise Ratio (PSNR) was similar to 1 dB without incurring any throughput penalty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 10 GHz Fourier Rotman lens enabled dynamic directional modulation (DM) transmitter is experimentally evaluated. Bit error rate (BER) performance is obtained via real-time data transmission. It is shown that Fourier Rotman DM functionality enhances system security performance in terms of narrower decodable low BER region and higher BER values associated with BER sidelobes especially under high signal to noise ratio (SNR) scenarios. This enhancement is achieved by controlled corruption of constellation diagrams in IQ space by orthogonal injection of interference. Furthermore, the paper gives the first report of a functional dual-beam DM transmitter, which has the capability of simultaneously projecting two independent data streams into two different spatial directions while simultaneously scrambling the information signals along all other directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article shows practical results of a self-tracking receiving antenna array using a new phase locked loop (PLL) tracking configuration. The PLL configuration differs from other architectures, as it has the new feature of being able to directly track phase modulated signals without requiring an additional unmodulated pilot carrier to be present. The PLLs are used within the antenna array to produce a constant phase intermediate frequency (IF) for each antenna element. These IF's can then be combined in phase, regardless of the angle of arrival of the signal, thus utilizing the antennas array factor. The article's main focus is on the phase jitter performance of the modulation insensitive PLL carrier recovery when tracking phase modulated signals of low signal to noise ratio. From this analysis, it is concluded that the new architecture, when optimally designed, can produce phase jitter performance close to that of a conventional tracking PLL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a low-cost portable electrochemical instrument capable of on-site identification of heavy metals. The instrument acquires metal-specific voltage and current signals by the application of differential pulse anodic stripping voltammetry. This technique enhances the analytical current and rejects the background current, resulting in a higher signal-to-noise ratio for a better detection limit. The identification of heavy metals is based on an intelligent machine-based method using a multilayer perceptron neural network consisting of three layers of neurons. The neural network is implemented using a 16 bit microcontroller. The system is developed for use in the field in order to avoid expensive and time-consuming procedures and can be used in a variety of situations to help environmental assessment and control. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose general-order transmit antenna selection to enhance the secrecy performance of multiple-input–multiple-output multieavesdropper channels with outdated channel state information (CSI) at the transmitter. To evaluate the effect of the outdated CSI on the secure transmission of the system, we investigate the secrecy performance for two practical scenarios, i.e., Scenarios I and II, where the eavesdropper's CSI is not available at the transmitter and is available at the transmitter, respectively. For Scenario I, we derive exact and asymptotic closed-form expressions for the secrecy outage probability in Nakagami- m fading channels. In addition, we also derive the probability of nonzero secrecy capacity and the \varepsilon -outage secrecy capacity, respectively. Simple asymptotic expressions for the secrecy outage probability reveal that the secrecy diversity order is reduced when the CSI is outdated at the transmitter, and it is independent of the number of antennas at each eavesdropper N_text\rm{E} , the fading parameter of the eavesdropper's channel m_text\rm{E} , and the number of eavesdroppers M . For Scenario II, we make a comprehensive analysis of the average secrecy capacity obtained by the system. Specifically, new closed-form expressions for the exact and asymptotic average secrecy capacity are derived, which are valid for general systems with an arbitrary number of antennas, number of eavesdroppers, and fading severity parameters. Resorting to these results, we also determine a high signal-to-noise ratio power offset to explicitly quantify the impact of the main c- annel and the eavesdropper's channel on the average secrecy capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this reported work, the frequency diverse array concept is employed to construct an orthogonal frequency-division multiplexing (OFDM) transmitter that has the capability of securing wireless communication in free space directly in the physical-layer without the need for mathematical encryption. The characteristics of the proposed scheme in terms of its secrecy performance are validated via bit error rate simulation under both high and low signal to noise ratio scenarios using the IEEE 802.11 OFDM physical-layer specification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using polycapillary lenses to focus laser-produced x-ray sources to high intensities, an improvement in signal-to-noise ratio can be achieved. Here the He-alpha line emission produced by driving a titanium backlighter target is focused by a polycapillary lens and the output characterized. The x-ray spot is measured to have a peak intensity of 4.5 x 10(7) photons, with a total photon count of 8.8 x 10(8) in 0.13 +/- 0.01 mm(2). This setup is equivalent to placing the backlighter target 3 mm from the sample with a 600 mu m diameter pinhole. The polycapillary lens enables the placement of the backlighter target at a much larger distance from the sample to be studied and therefore has the ability to greatly improve the signal-to-noise ratio on detectors. We demonstrate this with two simple diffraction experiments using pyrolytic graphite and polycrystalline aluminium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio-frequency (RF) impairments, which intimately exist in wireless communication systems, can severely limit the performance of multiple-input-multiple-output (MIMO) systems. Although we can resort to compensation schemes to mitigate some of these impairments, a certain amount of residual impairments always persists. In this paper, we consider a training-based point-to-point MIMO system with residual transmit RF impairments (RTRI) using spatial multiplexing transmission. Specifically, we derive a new linear channel estimator for the proposed model, and show that RTRI create an estimation error floor in the high signal-to-noise ratio (SNR) regime. Moreover, we derive closed-form expressions for the signal-to-noise-plus-interference ratio (SINR) distributions, along with analytical expressions for the ergodic achievable rates of zero-forcing, maximum ratio combining, and minimum mean-squared error receivers, respectively. In addition, we optimize the ergodic achievable rates with respect to the training sequence length and demonstrate that finite dimensional systems with RTRI generally require more training at high SNRs than those with ideal hardware. Finally, we extend our analysis to large-scale MIMO configurations, and derive deterministic equivalents of the ergodic achievable rates. It is shown that, by deploying large receive antenna arrays, the extra training requirements due to RTRI can be eliminated. In fact, with a sufficiently large number of receive antennas, systems with RTRI may even need less training than systems with ideal hardware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A relay network in which a source wishes to convey a confidential message to a legitimate destination with the assistance of trusted relays is considered. In particular, cooperative beamforming and user selection techniques are applied to protect the confidential message. The secrecy rate (SR) and secrecy outage probability (SOP) of the network are investigated first, and a tight upper bound for the SR and an exact formula for the SOP are derived. Next, asymptotic approximations for the SR and SOP in the high signal-to-noise ratio (SNR) regime are derived for two different schemes: i) cooperative beamforming and ii) multiuser selection. Further, a new concept of cooperative diversity gain, namely, adapted cooperative diversity gain (ACDG), which can be used to evaluate security level of a cooperative relaying network, is investigated. It is shown that the ACDG of cooperative beamforming is equal to the conventional cooperative diversity gain of traditional multiple-input single-output networks, while the ACDG of the multiuser scenario is equal to that of traditional single-input multiple-output networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the achievable ergodic sum-rate of multiuser multiple-input multiple-output downlink systems in Rician fading channels. We first derive a lower bound on the average signal-to-leakage-and-noise ratio by using the Mullen’s inequality, and then use it to analyze the effect of channel mean information on the achievable ergodic sum-rate. A novel statistical-eigenmode space-division multiple-access (SESDMA) downlink transmission scheme is then proposed. For this scheme, we derive an exact analytical closed-form expression for the achievable ergodic rate and present tractable tight upper and lower bounds. Based on our analysis, we gain valuable insights into the system parameters, such as the number of transmit antennas, the signal-to-noise ratio (SNR) and Rician K-factor on the system sum-rate. Results show that the sum-rate converges to a saturation value in the high SNR regime and tends to a lower limit for the low Rician K-factor case. In addition, we compare the achievable ergodic sum-rate between SE-SDMA and zeroforcing beamforming with perfect channel state information at the base station. Our results reveal that the rate gap tends to zero in the high Rician K-factor regime. Finally, numerical results are presented to validate our analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Key generation from the randomness of wireless channels is a promising technique to establish a secret cryptographic key securely between legitimate users. This paper proposes a new approach to extract keys efficiently from channel responses of individual orthogonal frequency-division multiplexing (OFDM) subcarriers. The efficiency is achieved by (i) fully exploiting randomness from time and frequency domains and (ii) improving the cross-correlation of the channel measurements. Through the theoretical modelling of the time and frequency autocorrelation relationship of the OFDM subcarrier's channel responses, we can obtain the optimal probing rate and use multiple uncorrelated subcarriers as random sources. We also study the effects of non-simultaneous measurements and noise on the cross-correlation of the channel measurements. We find the cross-correlation is mainly impacted by noise effects in a slow fading channel and use a low pass filter (LPF) to reduce the key disagreement rate and extend the system's working signal-to-noise ratio range. The system is evaluated in terms of randomness, key generation rate, and key disagreement rate, verifying that it is feasible to extract randomness from both time and frequency domains of the OFDM subcarrier's channel responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the uplink of a single-cell multi-user single-input multiple-output (MU-SIMO) system with in-phase and quadrature-phase imbalance (IQI). Particularly, we investigate the effect of receive (RX) IQI on the performance of MU-SIMO systems with large antenna arrays employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that the higher the value of signal-to-noise ratio (SNR) the higher the impact of IQI on the spectral efficiency (SE). Moreover, a novel pilot-based joint estimator of the augmented MIMO channel matrix and IQI coefficients is described and then, a low-complexity IQI compensation scheme is proposed which is based on the
IQI coefficients’ estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic SE assuming transmission over Rayleigh fading channels with large-scale fading. Furthermore, we investigate how many MSs should be scheduled in massive multiple-input multiple-output (MIMO) systems with IQI and show that the highest SE loss occurs at the optimal operating point. Finally,
by deriving asymptotic power scaling laws, and proving that the SE loss due to IQI is asymptotically independent of the number of BS antennas, we show that massive MIMO is resilient to the effect of RX IQI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(abreviated) We aim to study the inner-wind structure (R<250 Rstar) of the well-known red supergiant VY CMa. We analyse high spatial resolution (~0".24x0".13) ALMA Science Verification (SV) data in band 7 in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50 degrees measured from north to east. However, this picture can not capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this hints at a chemical process preventing all NaCl from condensing onto dust grains. We show that in the case of the ratio of the surface binding temperature to the grain temperature being ~50, only some 10% of NaCl remains in gaseous form, while for lower values of this ratio thermal desorption efficiently evaporates NaCl. Photodesorption by stellar photons seems not to be a viable explanation for the detection of gaseous NaCl at 220 Rstar from the central star, and instead, we propose shock-induced sputtering driven by localized mass ejection events as alternative.