871 resultados para Construction. Indicators System. Performance. Ergonomics. Validation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption.

This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications.

Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level.

Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,\lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration of other information within that video; namely, focal and spectral information. The next part of the thesis demonstrates derivative works of CACTI: compressive extended depth of field and compressive spectral-temporal imaging. These works successfully show the technique's extension of temporal coding to improve sensing performance in these other dimensions.

Geometrical optics-related tradeoffs, such as the classic challenges of wide-field-of-view and high resolution photography, have motivated the development of mulitscale camera arrays. The advent of such designs less than a decade ago heralds a new era of research- and engineering-related challenges. One significant challenge is that of managing the focal volume (x,y,z) over wide fields of view and resolutions. The fourth chapter shows advances on focus and image quality assessment for a class of multiscale gigapixel cameras developed at Duke.

Along the same line of work, we have explored methods for dynamic and adaptive addressing of focus via point spread function engineering. We demonstrate another form of temporal coding in the form of physical translation of the image plane from its nominal focal position. We demonstrate this technique's capability to generate arbitrary point spread functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a noninvasive three-dimensional interferometric imaging technique capable of achieving micrometer scale resolution. It is now a standard of care in ophthalmology, where it is used to improve the accuracy of early diagnosis, to better understand the source of pathophysiology, and to monitor disease progression and response to therapy. In particular, retinal imaging has been the most prevalent clinical application of OCT, but researchers and companies alike are developing OCT systems for cardiology, dermatology, dentistry, and many other medical and industrial applications.

Adaptive optics (AO) is a technique used to reduce monochromatic aberrations in optical instruments. It is used in astronomical telescopes, laser communications, high-power lasers, retinal imaging, optical fabrication and microscopy to improve system performance. Scanning laser ophthalmoscopy (SLO) is a noninvasive confocal imaging technique that produces high contrast two-dimensional retinal images. AO is combined with SLO (AOSLO) to compensate for the wavefront distortions caused by the optics of the eye, providing the ability to visualize the living retina with cellular resolution. AOSLO has shown great promise to advance the understanding of the etiology of retinal diseases on a cellular level.

Broadly, we endeavor to enhance the vision outcome of ophthalmic patients through improved diagnostics and personalized therapy. Toward this end, the objective of the work presented herein was the development of advanced techniques for increasing the imaging speed, reducing the form factor, and broadening the versatility of OCT and AOSLO. Despite our focus on applications in ophthalmology, the techniques developed could be applied to other medical and industrial applications. In this dissertation, a technique to quadruple the imaging speed of OCT was developed. This technique was demonstrated by imaging the retinas of healthy human subjects. A handheld, dual depth OCT system was developed. This system enabled sequential imaging of the anterior segment and retina of human eyes. Finally, handheld SLO/OCT systems were developed, culminating in the design of a handheld AOSLO system. This system has the potential to provide cellular level imaging of the human retina, resolving even the most densely packed foveal cones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of an open-source system for virtual bronchoscopy used in combination with electromagnetic instrument tracking. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. The open-source platform 3D Slicer was used for creating freely available algorithms for virtual bronchscopy. Firstly, the development of an open-source semi-automatic algorithm for prediction of solitary pulmonary nodule malignancy is presented. This approach may help the physician decide whether to proceed with biopsy of the nodule. The user-selected nodule is segmented in order to extract radiological characteristics (i.e., size, location, edge smoothness, calcification presence, cavity wall thickness) which are combined with patient information to calculate likelihood of malignancy. The overall accuracy of the algorithm is shown to be high compared to independent experts' assessment of malignancy. The algorithm is also compared with two different predictors, and our approach is shown to provide the best overall prediction accuracy. The development of an airway segmentation algorithm which extracts the airway tree from surrounding structures on chest Computed Tomography (CT) images is then described. This represents the first fundamental step toward the creation of a virtual bronchoscopy system. Clinical and ex-vivo images are used to evaluate performance of the algorithm. Different CT scan parameters are investigated and parameters for successful airway segmentation are optimized. Slice thickness is the most affecting parameter, while variation of reconstruction kernel and radiation dose is shown to be less critical. Airway segmentation is used to create a 3D rendered model of the airway tree for virtual navigation. Finally, the first open-source virtual bronchoscopy system was combined with electromagnetic tracking of the bronchoscope for the development of a GPS-like system for navigating within the lungs. Tools for pre-procedural planning and for helping with navigation are provided. Registration between the lungs of the patient and the virtually reconstructed airway tree is achieved using a landmark-based approach. In an attempt to reduce difficulties with registration errors, we also implemented a landmark-free registration method based on a balanced airway survey. In-vitro and in-vivo testing showed good accuracy for this registration approach. The centreline of the 3D airway model is extracted and used to compensate for possible registration errors. Tools are provided to select a target for biopsy on the patient CT image, and pathways from the trachea towards the selected targets are automatically created. The pathways guide the physician during navigation, while distance to target information is updated in real-time and presented to the user. During navigation, video from the bronchoscope is streamed and presented to the physician next to the 3D rendered image. The electromagnetic tracking is implemented with 5 DOF sensing that does not provide roll rotation information. An intensity-based image registration approach is implemented to rotate the virtual image according to the bronchoscope's rotations. The virtual bronchoscopy system is shown to be easy to use and accurate in replicating the clinical setting, as demonstrated in the pre-clinical environment of a breathing lung method. Animal studies were performed to evaluate the overall system performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Foundation doctors are expected to assess and interpret plain x-ray studies of the chest/abdomen before a definitive report is issued by senior staff. The Royal College of Radiologists have published guidelines (RCR curriculum) on the scope of plain film findings medical students should be familiar with.1 Studies have shown that the x-ray interpretation without feedback does not significantly improve diagnostic ability. 2 Queen’s University, Belfast Trust Radiology and Experior Medical developed an online system to assess individual student ability to interpret X-ray findings. Over a series of assessments each student’s profile is built up, identifying strengths and weakness. The system can then create bespoke individual assessments re-evaluating previously identified weak areas and quantifying interpretative skill improvement. Aim: To determine how readily an online system is adopted by senior medical students, investigating if increasing exposure to x-ray interpretation combined with cyclical formative feedback enhances performance. Methods: The system was offered to all 270 final year medical students as an online resource. The system comprised a series of 20 weekly 30 minute assessments, containing normal and abnormal x-rays within the RCR curriculum. After each assessment students were given formative feedback, including their own result, annotated answers, peer group comparison and a breakdown of areas of strength and weakness. Focus groups of 4-5 students addressed student perspectives of the system, including ease of use, image resolution, system performance across different operating platforms, perceived value of formative feedback loops, breakdown of performance and the value of bespoke personalised assessments. Research Ethics Approval was granted for the study. Data analysis was via two-sided one-sample t-test; initial minimal recruitment was estimated as 60 students, to detect a mean 10% change in performance, with a standard deviation of 20%. Results and Discussion: Over 80% (n = XXX/270) of the student cohort engaged with the study. Student baseline average was 39%, increasing to 62% by the exit test. The steadily sustained improvement (57% relative performance in interpretative diagnostic accuracy) was despite increasing test difficulty. Student feedback via focus groups was universally positive throughout the examined domains. Conclusion: The online resource proved to be valuable, with high levels of student engagement, improving performance despite increasingly difficulty testing and positive learner experience with the system. References: 1. Undergraduate Radiology Curriculum, The Royal College of Ra, April 2012. Ref No. BFCR(12)4 The Royal College of Radiologists, April 2012 2. I Satia, S Bashagha, A Bibi, R Ahmed, S Mellor, F Zaman. Assessing the accuracy and certainty in interpretating chest x-rays in the medical division. Clin Med August 2013 Vol.13 no. 4 349-352

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les concentrés de protéines de lait sont couramment utilisés comme ingrédients lors de la standardisation du lait de fromagerie. La concentration des protéines est généralement réalisée par ultrafiltration (UF) à l’aide de membranes polymériques ayant un seuil de coupure de 10 kDa, et ce, jusqu’à un facteur de concentration volumique de 3.5X. Dans l’optique d’améliorer l’efficience du procédé d’UF, l’étude avait pour but de caractériser l’impact du mode opératoire (pression transmembranaire constante (465 et 672 kPa) et flux constant) ainsi que la température (10°C et 50°C) sur la performance du système jusqu’à un facteur de concentration volumique de 3.6X. Le module de filtration à l’échelle pilote comprenait une membrane d’UF en polyéthersulfone de 10 kDa d’une surface de 2,04 m2. La performance du système a été caractérisée sur le flux de perméation, la sélectivité et la consommation énergétique totale. L’étude a montré que le flux de perméation était 1,9 fois plus élevé à une température de 50°C comparativement à 10°C lors de l’UF du lait. Le coefficient de rejet des protéines n’a pas été affecté significativement par la pression transmembranaire et la température (P< 0,05). L’effet de la température a été observé au niveau de la teneur en calcium, laquelle était plus élevée de 12% dans les rétentats générés à 50C. La consommation énergétique totale du système d’UF était plus élevée à 10C comparativement à 50C, représentant 0,32±0,02 et 0,26±0,04 kWh/kg rétentat respectivement. Les résultats montrent que le ratio d’efficience énergétique (rapport entre le flux de perméation et la consommation énergétique) optimal a été obtenu à faible pression transmembranaire constante et à 50C. L’approche développée dans le cadre de ce projet fournira des outils aux industriels laitiers pour améliorer l’éco-efficience de leurs procédés de séparation baromembranaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large class of computational problems are characterised by frequent synchronisation, and computational requirements which change as a function of time. When such a problem is solved on a message passing multiprocessor machine [5], the combination of these characteristics leads to system performance which deteriorate in time. As the communication performance of parallel hardware steadily improves so load balance becomes a dominant factor in obtaining high parallel efficiency. Performance can be improved with periodic redistribution of computational load; however, redistribution can sometimes be very costly. We study the issue of deciding when to invoke a global load re-balancing mechanism. Such a decision policy must actively weigh the costs of remapping against the performance benefits, and should be general enough to apply automatically to a wide range of computations. This paper discusses a generic strategy for Dynamic Load Balancing (DLB) in unstructured mesh computational mechanics applications. The strategy is intended to handle varying levels of load changes throughout the run. The major issues involved in a generic dynamic load balancing scheme will be investigated together with techniques to automate the implementation of a dynamic load balancing mechanism within the Computer Aided Parallelisation Tools (CAPTools) environment, which is a semi-automatic tool for parallelisation of mesh based FORTRAN codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past few years, the number of wireless networks users has been increasing. Until now, Radio-Frequency (RF) used to be the dominant technology. However, the electromagnetic spectrum in these region is being saturated, demanding for alternative wireless technologies. Recently, with the growing market of LED lighting, the Visible Light Communications has been drawing attentions from the research community. First, it is an eficient device for illumination. Second, because of its easy modulation and high bandwidth. Finally, it can combine illumination and communication in the same device, in other words, it allows to implement highly eficient wireless communication systems. One of the most important aspects in a communication system is its reliability when working in noisy channels. In these scenarios, the received data can be afected by errors. In order to proper system working, it is usually employed a Channel Encoder in the system. Its function is to code the data to be transmitted in order to increase system performance. It commonly uses ECC, which appends redundant information to the original data. At the receiver side, the redundant information is used to recover the erroneous data. This dissertation presents the implementation steps of a Channel Encoder for VLC. It was consider several techniques such as Reed-Solomon and Convolutional codes, Block and Convolutional Interleaving, CRC and Puncturing. A detailed analysis of each technique characteristics was made in order to choose the most appropriate ones. Simulink models were created in order to simulate how diferent codes behave in diferent scenarios. Later, the models were implemented in a FPGA and simulations were performed. Hardware co-simulations were also implemented to faster simulation results. At the end, diferent techniques were combined to create a complete Channel Encoder capable of detect and correct random and burst errors, due to the usage of a RS(255,213) code with a Block Interleaver. Furthermore, after the decoding process, the proposed system can identify uncorrectable errors in the decoded data due to the CRC-32 algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new hyper-heuristic method using Case-Based Reasoning (CBR) for solving course timetabling problems. The term Hyper-heuristics has recently been employed to refer to 'heuristics that choose heuristics' rather than heuristics that operate directly on given problems. One of the overriding motivations of hyper-heuristic methods is the attempt to develop techniques that can operate with greater generality than is currently possible. The basic idea behind this is that we maintain a case base of information about the most successful heuristics for a range of previous timetabling problems to predict the best heuristic for the new problem in hand using the previous knowledge. Knowledge discovery techniques are used to carry out the training on the CBR system to improve the system performance on the prediction. Initial results presented in this paper are good and we conclude by discussing the con-siderable promise for future work in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When designing systems that are complex, dynamic and stochastic in nature, simulation is generally recognised as one of the best design support technologies, and a valuable aid in the strategic and tactical decision making process. A simulation model consists of a set of rules that define how a system changes over time, given its current state. Unlike analytical models, a simulation model is not solved but is run and the changes of system states can be observed at any point in time. This provides an insight into system dynamics rather than just predicting the output of a system based on specific inputs. Simulation is not a decision making tool but a decision support tool, allowing better informed decisions to be made. Due to the complexity of the real world, a simulation model can only be an approximation of the target system. The essence of the art of simulation modelling is abstraction and simplification. Only those characteristics that are important for the study and analysis of the target system should be included in the simulation model. The purpose of simulation is either to better understand the operation of a target system, or to make predictions about a target system’s performance. It can be viewed as an artificial white-room which allows one to gain insight but also to test new theories and practices without disrupting the daily routine of the focal organisation. What you can expect to gain from a simulation study is very well summarised by FIRMA (2000). His idea is that if the theory that has been framed about the target system holds, and if this theory has been adequately translated into a computer model this would allow you to answer some of the following questions: · Which kind of behaviour can be expected under arbitrarily given parameter combinations and initial conditions? · Which kind of behaviour will a given target system display in the future? · Which state will the target system reach in the future? The required accuracy of the simulation model very much depends on the type of question one is trying to answer. In order to be able to respond to the first question the simulation model needs to be an explanatory model. This requires less data accuracy. In comparison, the simulation model required to answer the latter two questions has to be predictive in nature and therefore needs highly accurate input data to achieve credible outputs. These predictions involve showing trends, rather than giving precise and absolute predictions of the target system performance. The numerical results of a simulation experiment on their own are most often not very useful and need to be rigorously analysed with statistical methods. These results then need to be considered in the context of the real system and interpreted in a qualitative way to make meaningful recommendations or compile best practice guidelines. One needs a good working knowledge about the behaviour of the real system to be able to fully exploit the understanding gained from simulation experiments. The goal of this chapter is to brace the newcomer to the topic of what we think is a valuable asset to the toolset of analysts and decision makers. We will give you a summary of information we have gathered from the literature and of the experiences that we have made first hand during the last five years, whilst obtaining a better understanding of this exciting technology. We hope that this will help you to avoid some pitfalls that we have unwittingly encountered. Section 2 is an introduction to the different types of simulation used in Operational Research and Management Science with a clear focus on agent-based simulation. In Section 3 we outline the theoretical background of multi-agent systems and their elements to prepare you for Section 4 where we discuss how to develop a multi-agent simulation model. Section 5 outlines a simple example of a multi-agent system. Section 6 provides a collection of resources for further studies and finally in Section 7 we will conclude the chapter with a short summary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Programa de Pós-Graduação em Geotecnia, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconfigurable hardware can be used to build a multitasking system where tasks are assigned to HW resources at run-time according to the requirements of the running applications. These tasks are frequently represented as direct acyclic graphs and their execution is typically controlled by an embedded processor that schedules the graph execution. In order to improve the efficiency of the system, the scheduler can apply prefetch and reuse techniques that can greatly reduce the reconfiguration latencies. For an embedded processor all these computations represent a heavy computational load that can significantly reduce the system performance. To overcome this problem we have implemented a HW scheduler using reconfigurable resources. In addition we have implemented both prefetch and replacement techniques that obtain as good results as previous complex SW approaches, while demanding just a few clock cycles to carry out the computations. We consider that the HW cost of the system (in our experiments 3% of a Virtex-II PRO xc2vp30 FPGA) is affordable taking into account the great efficiency of the techniques applied to hide the reconfiguration latency and the negligible run-time penalty introduced by the scheduler computations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconfigurable hardware can be used to build multi tasking systems that dynamically adapt themselves to the requirements of the running applications. This is especially useful in embedded systems, since the available resources are very limited and the reconfigurable hardware can be reused for different applications. In these systems computations are frequently represented as task graphs that are executed taking into account their internal dependencies and the task schedule. The management of the task graph execution is critical for the system performance. In this regard, we have developed two dif erent versions, a software module and a hardware architecture, of a generic task-graph execution manager for reconfigurable multi-tasking systems. The second version reduces the run-time management overheads by almost two orders of magnitude. Hence it is especially suitable for systems with exigent timing constraints. Both versions include specific support to optimize the reconfiguration process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incidents and rolling stock breakdowns are commonplace in rapid transit rail systems and may disrupt the system performance imposing deviations from planned operations. A network design model is proposed for reducing the effect of disruptions less likely to occur. Failure probabilities are considered functions of the amount of services and the rolling stock’s routing on the designed network so that they cannot be calculated a priori but result from the design process itself. A two recourse stochastic programming model is formulated where the failure probabilities are an implicit function of the number of services and routing of the transit lines.