890 resultados para Construction process improvement
Resumo:
Photocopy.
Resumo:
Master microform held by: ResP.
Resumo:
"1 June 1977."
Resumo:
Mode of access: Internet.
Resumo:
Other editions have been published by the American school of correspondence, Chicago.
Resumo:
Paged continuously.
Resumo:
Binder's title: Improvement in bridges.
Resumo:
If product cycle time reduction is the mission, and the multifunctional team is the means of achieving the mission, what then is the modus operandi by which this means is to accomplish its mission? This paper asserts that a preferred modus operandi for the multifunctional team is to adopt a process-oriented view of the manufacturing enterprise, and for this it needs the medium of a process map [16] The substance of this paper is a methodology which enables the creation of such maps Specific examples of process models drawn from the product develop ment life cycle are presented and described in order to support the methodology's integrity and value The specific deliverables we have so far obtained are a methodology for process capture and analysis, a collection of process models spanning the product development cycle, and, an engineering handbook which hosts these models and presents a computer-based means of navigating through these processes in order to allow users a better understanding of the nature of the business, their role in it, and why the job that they do benefits the work of the company We assert that this kind of thinking is the essence of concurrent engineering implementation, and further that the systemigram process models uniquely stim ulate and organise such thinking.
Resumo:
Pyrolysis is one of several thermochemical technologies that convert solid biomass into more useful and valuable bio-fuels. Pyrolysis is thermal degradation in the complete or partial absence of oxygen. Under carefully controlled conditions, solid biomass can be converted to a liquid known as bie-oil in 75% yield on dry feed. Bio-oil can be used as a fuel but has the drawback of having a high level of oxygen due to the presence of a complex mixture of molecular fragments of cellulose, hemicellulose and lignin polymers. Also, bio-oil has a number of problems in use including high initial viscosity, instability resulting in increased viscosity or phase separation and high solids content. Much effort has been spent on upgrading bio-oil into a more usable liquid fuel, either by modifying the liquid or by major chemical and catalytic conversion to hydrocarbons. The overall primary objective was to improve oil stability by exploring different ways. The first was to detennine the effect of feed moisture content on bio-oil stability. The second method was to try to improve bio-oil stability by partially oxygenated pyrolysis. The third one was to improve stability by co-pyrolysis with methanol. The project was carried out on an existing laboratory pyrolysis reactor system, which works well with this project without redesign or modification too much. During the finishing stages of this project, it was found that the temperature of the condenser in the product collection system had a marked impact on pyrolysis liquid stability. This was discussed in this work and further recommendation given. The quantity of water coming from the feedstock and the pyrolysis reaction is important to liquid stability. In the present work the feedstock moisture content was varied and pyrolysis experiments were carried out over a range of temperatures. The quality of the bio-oil produced was measured as water content, initial viscosity and stability. The result showed that moderate (7.3-12.8 % moisture) feedstock moisture led to more stable bio-oil. One of drawbacks of bio-oil was its instability due to containing unstable oxygenated chemicals. Catalytic hydrotreatment of the oil and zeolite cracking of pyrolysis vapour were discllssed by many researchers, the processes were intended to eliminate oxygen in the bio-oil. In this work an alternative way oxygenated pyrolysis was introduced in order to reduce oil instability, which was intended to oxidise unstable oxygenated chemicals in the bio-oil. The results showed that liquid stability was improved by oxygen addition during the pyrolysis of beech wood at an optimum air factor of about 0.09-0.15. Methanol as a postproduction additive to bio-oil has been studied by many researchers and the most effective result came from adding methanol to oil just after production. Co-pyrolysis of spruce wood with methanol was undertaken in the present work and it was found that methanol improved liquid stability as a co-pyrolysis solvent but was no more effective than when used as a postproduction additive.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is both time-wasting and expensive. A risk-based model that reduces the amount of time spent on inspection has been presented. This model not only reduces the cost of maintaining petroleum pipelines, but also suggests an efficient design and operation philosophy, construction methodology, and logical insurance plans. The risk-based model uses the analytic hierarchy process (AHP), a multiple-attribute decision-making technique, to identify the factors that influence failure on specific segments and to analyze their effects by determining probability of risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost, and the cumulative effect of failure is determined through probability analysis. The technique does not totally eliminate subjectivity, but it is an improvement over the existing inspection method.
Resumo:
The aim of this study is to address the main deficiencies with the prevailing project cost and time control practices for construction projects in the UK. A questionnaire survey was carried out with 250 top companies followed by in-depth interviews with 15 experienced practitioners from these companies in order to gain further insights of the identified problems, and their experience of good practice on how these problems can be tackled. On the basis of these interviews and syntheses with literature, a list of 65 good practice recommendations have been developed for the key project control tasks: planning, monitoring, reporting and analysing. The Delphi method was then used, with the participation of a panel of 8 practitioner experts, to evaluate these improvement recommendations and to establish their degree of relevance. After two rounds of Delphi, these recommendations are put forward as "critical", "important", or "helpful" measures for improving project control practice.