970 resultados para Computational methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of the solution. Based on our a posteriori error bound we design and implement the corresponding adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement. The theoretical results are illustrated by a series of numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the a priori error analysis of hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form under weak assumptions on the mesh design and the local finite element spaces employed. In particular, we prove a priori hp-error bounds for linear target functionals of the solution, on (possibly) anisotropic computational meshes with anisotropic tensor-product polynomial basis functions. The theoretical results are illustrated by a numerical experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the construction and analysis of the non-overlapping Schwarz preconditioners proposed in Antonietti et al. [Math. Model. Numer. Anal., 41(1):21-54, 2007] and [Math. Model. Numer. Anal., submitted, 2006] to the (non-consistent) super penalty discontinuos Galerkin methods introduced by Babuska et al. [SIAM J. Numer. Anal., 10:863-875, 1973] and by Brezzi et al. [Numer. Methods Partial Differential Equations, 16(4):365-378, 2000]. We show that the resulting preconditioners are scalable, and we provide the convergence estimates. We also present numerical experiments demonstrating the theoretical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the a posteriori error analysis and hp-adaptation strategies for hp-version interior penalty discontinuous Galerkin methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes with anisotropically enriched elemental polynomial degrees. In particular, we exploit duality based hp-error estimates for linear target functionals of the solution and design and implement the corresponding adaptive algorithms to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement and isotropic and anisotropic polynomial degree enrichment. The superiority of the proposed algorithm in comparison with standard hp-isotropic mesh refinement algorithms and an h-anisotropic/p-isotropic adaptive procedure is illustrated by a series of numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we propose several advances in the numerical and computational algorithms that are used to determine tomographic estimates of physical parameters in the solar corona. We focus on methods for both global dynamic estimation of the coronal electron density and estimation of local transient phenomena, such as coronal mass ejections, from empirical observations acquired by instruments onboard the STEREO spacecraft. We present a first look at tomographic reconstructions of the solar corona from multiple points-of-view, which motivates the developments in this thesis. In particular, we propose a method for linear equality constrained state estimation that leads toward more physical global dynamic solar tomography estimates. We also present a formulation of the local static estimation problem, i.e., the tomographic estimation of local events and structures like coronal mass ejections, that couples the tomographic imaging problem to a phase field based level set method. This formulation will render feasible the 3D tomography of coronal mass ejections from limited observations. Finally, we develop a scalable algorithm for ray tracing dense meshes, which allows efficient computation of many of the tomographic projection matrices needed for the applications in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the hydrodynamic stability problem associated with the incompressible Navier-Stokes equations. Particular attention is given to the reliable error estimation of the eigenvalue problem in channel and pipe geometries. Here, computable a posteriori error bounds are derived based on employing the generalization of the standard Dual-Weighted-Residual approach, originally developed for the estimation of target functionals of the solution, to eigenvalue/stability problems. The underlying analysis consists of constructing both a dual eigenvalue problem and a dual problem for the original base solution. In this way, errors stemming from both the numerical approximation of the original nonlinear flow problem, as well as the underlying linear eigenvalue problem are correctly controlled. Numerical experiments highlighting the practical performance of the proposed a posteriori error indicator on adaptively refined computational meshes are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive candidiasis (IC) is an opportunistic systemic mycosis caused by Candida species (commonly Candida albicans) that continues to pose a significant public health problem worldwide. Despite great advances in antifungal therapy and changes in clinical practices, IC remains a major infectious cause of morbidity and mortality in severely immunocompromised or critically ill patients, and further accounts for substantial healthcare costs. Its impact on patient clinical outcome and economic burden could be ameliorated by timely initiation of appropriate antifungal therapy. However, early detection of IC is extremely difficult because of its unspecific clinical signs and symptoms, and the inadequate accuracy and time delay of the currently available diagnostic or risk stratification methods. In consequence, the diagnosis of IC is often attained in advanced stages of infection (leading to delayed therapeutic interventions and ensuing poor clinical outcomes) or, unfortunately, at autopsy. In addition to the difficulties encountered in diagnosing IC at an early stage, the initial therapeutic decision-making process is also hindered by the insufficient accuracy of the currently available tools for predicting clinical outcomes in individual IC patients at presentation. Therefore, it is not surprising that clinicians are generally unable to early detect IC, and identify those IC patients who are most likely to suffer fatal clinical outcomes and may benefit from more personalized therapeutic strategies at presentation. Better diagnostic and prognostic biomarkers for IC are thus needed to improve the clinical management of this life-threatening and costly opportunistic fungal infection...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting accurate bond length alternations (BLAs) in long conjugated oligomers has been a significant challenge for electronic-structure methods for many decades, made particularly important by the close relationships between BLA and the rich optoelectronic properties of π-delocalized systems. Here, we test the accuracy of recently developed, and increasingly popular, double hybrid (DH) functionals, positioned at the top of Jacobs Ladder of DFT methods of increasing sophistication, computational cost, and accuracy, due to incorporation of MP2 correlation energy. Our test systems comprise oligomeric series of polyacetylene, polymethineimine, and polysilaacetylene up to six units long. MP2 calculations reveal a pronounced shift in BLAs between the 6-31G(d) basis set used in many studies of BLA to date and the larger cc-pVTZ basis set, but only modest shifts between cc-pVTZ and aug-cc-pVQZ results. We hence perform new reference CCSD(T)/cc-pVTZ calculations for all three series of oligomers against which we assess the performance of several families of DH functionals based on BLYP, PBE, and TPSS, along with lower-rung relatives including global- and range-separated hybrids. Our results show that DH functionals systematically improve the accuracy of BLAs relative to single hybrid functionals. xDH-PBE0 (N4 scaling using SOS-MP2) emerges as a DH functional rivaling the BLA accuracy of SCS-MP2 (N5 scaling), which was found to offer the best compromise between computational cost and accuracy the last time the BLA accuracy of DFT- and wave function-based methods was systematically investigated. Interestingly, xDH-PBE0 (XYG3), which differs to other DHs in that its MP2 term uses PBE0 (B3LYP) orbitals that are not self-consistent with the DH functional, is an outlier of trends of decreasing average BLA errors with increasing fractions of MP2 correlation and HF exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis builds a framework for evaluating downside risk from multivariate data via a special class of risk measures (RM). The peculiarity of the analysis lies in getting rid of strong data distributional assumptions and in orientation towards the most critical data in risk management: those with asymmetries and heavy tails. At the same time, under typical assumptions, such as the ellipticity of the data probability distribution, the conformity with classical methods is shown. The constructed class of RM is a multivariate generalization of the coherent distortion RM, which possess valuable properties for a risk manager. The design of the framework is twofold. The first part contains new computational geometry methods for the high-dimensional data. The developed algorithms demonstrate computability of geometrical concepts used for constructing the RM. These concepts bring visuality and simplify interpretation of the RM. The second part develops models for applying the framework to actual problems. The spectrum of applications varies from robust portfolio selection up to broader spheres, such as stochastic conic optimization with risk constraints or supervised machine learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gait analysis allows to characterize motor function, highlighting deviations from normal motor behavior related to an underlying pathology. The widespread use of wearable inertial sensors has opened the way to the evaluation of ecological gait, and a variety of methodological approaches and algorithms have been proposed for the characterization of gait from inertial measures (e.g. for temporal parameters, motor stability and variability, specific pathological alterations). However, no comparative analysis of their performance (i.e. accuracy, repeatability) was available yet, in particular, analysing how this performance is affected by extrinsic (i.e. sensor location, computational approach, analysed variable, testing environmental constraints) and intrinsic (i.e. functional alterations resulting from pathology) factors. The aim of the present project was to comparatively analyze the influence of intrinsic and extrinsic factors on the performance of the numerous algorithms proposed in the literature for the quantification of specific characteristics (i.e. timing, variability/stability) and alterations (i.e. freezing) of gait. Considering extrinsic factors, the influence of sensor location, analyzed variable, and computational approach on the performance of a selection of gait segmentation algorithms from a literature review was analysed in different environmental conditions (e.g. solid ground, sand, in water). Moreover, the influence of altered environmental conditions (i.e. in water) was analyzed as referred to the minimum number of stride necessary to obtain reliable estimates of gait variability and stability metrics, integrating what already available in the literature for over ground gait in healthy subjects. Considering intrinsic factors, the influence of specific pathological conditions (i.e. Parkinson’s Disease) was analyzed as affecting the performance of segmentation algorithms, with and without freezing. Finally, the analysis of the performance of algorithms for the detection of gait freezing showed how results depend on the domain of implementation and IMU position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The world of Computational Biology and Bioinformatics presently integrates many different expertise, including computer science and electronic engineering. A major aim in Data Science is the development and tuning of specific computational approaches to interpret the complexity of Biology. Molecular biologists and medical doctors heavily rely on an interdisciplinary expert capable of understanding the biological background to apply algorithms for finding optimal solutions to their problems. With this problem-solving orientation, I was involved in two basic research fields: Cancer Genomics and Enzyme Proteomics. For this reason, what I developed and implemented can be considered a general effort to help data analysis both in Cancer Genomics and in Enzyme Proteomics, focusing on enzymes which catalyse all the biochemical reactions in cells. Specifically, as to Cancer Genomics I contributed to the characterization of intratumoral immune microenvironment in gastrointestinal stromal tumours (GISTs) correlating immune cell population levels with tumour subtypes. I was involved in the setup of strategies for the evaluation and standardization of different approaches for fusion transcript detection in sarcomas that can be applied in routine diagnostic. This was part of a coordinated effort of the Sarcoma working group of "Alleanza Contro il Cancro". As to Enzyme Proteomics, I generated a derived database collecting all the human proteins and enzymes which are known to be associated to genetic disease. I curated the data search in freely available databases such as PDB, UniProt, Humsavar, Clinvar and I was responsible of searching, updating, and handling the information content, and computing statistics. I also developed a web server, BENZ, which allows researchers to annotate an enzyme sequence with the corresponding Enzyme Commission number, the important feature fully describing the catalysed reaction. More to this, I greatly contributed to the characterization of the enzyme-genetic disease association, for a better classification of the metabolic genetic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.