916 resultados para Computational Topology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of computational aeroacoustics (CCA) was made for application in electronics cooler noise. Computational aeroacoustics encompasses all numerical methods where the purposes is to predict the noise emissions from a simulated flow. Numerical simulation of the flow inside and around heat sinks and fans can lead to a prediction of the emitted noise while they are still in the design phase. Direct CCA is theoretically the best way to predict flow-based acoustic phenomena numerically. It is typically used only for low-frequency sound prediction. The boundary element method offers low computational cost and does not use a computational grid, but instead use vortex-surface calculations to determine tonal noise. Axial fans are commonly used to increase the airflow and thus the heat transfer over the heat sinks within the computer cases. Very detailed source simulations in the fan and heat sink region coupled with the use of analogy methods could result in excellent simulation results with a reasonable computational effort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for the linear analysis of the stiffness and strength of open and closed cell lattices with arbitrary topology. The method hinges on a multiscale approach that separates the analysis of the lattice in two scales. At the macroscopic level, the lattice is considered as a uniform material; at the microscopic scale, on the other hand, the cell microstructure is modelled in detail by means of an in-house finite element solver. The method allows determine the macroscopic stiffness, the internal forces in the edges and walls of the lattice, as well as the global periodic buckling loads, along with their buckling modes. Four cube-based lattices and nine cell topologies derived by Archimedean polyhedra are studied. Several of them are characterized here for the first time with a particular attention on the role that the cell wall plays on the stiffness and strength properties. The method, automated in a computational routine, has been used to develop material property charts that help to gain insight into the performance of the lattices under investigation. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern Engineering Design involves the deployment of many computational tools. Re- search on challenging real-world design problems is focused on developing improvements for the engineering design process through the integration and application of advanced com- putational search/optimization and analysis tools. Successful application of these methods generates vast quantities of data on potential optimum designs. To gain maximum value from the optimization process, designers need to visualise and interpret this information leading to better understanding of the complex and multimodal relations between param- eters, objectives and decision-making of multiple and strongly conflicting criteria. Initial work by the authors has identified that the Parallel Coordinates interactive visualisation method has considerable potential in this regard. This methodology involves significant levels of user-interaction, making the engineering designer central to the process, rather than the passive recipient of a deluge of pre-formatted information. In the present work we have applied and demonstrated this methodology in two differ- ent aerodynamic turbomachinery design cases; a detailed 3D shape design for compressor blades, and a preliminary mean-line design for the whole compressor core. The first case comprises 26 design parameters for the parameterisation of the blade geometry, and we analysed the data produced from a three-objective optimization study, thus describing a design space with 29 dimensions. The latter case comprises 45 design parameters and two objective functions, hence developing a design space with 47 dimensions. In both cases the dimensionality can be managed quite easily in Parallel Coordinates space, and most importantly, we are able to identify interesting and crucial aspects of the relationships between the design parameters and optimum level of the objective functions under con- sideration. These findings guide the human designer to find answers to questions that could not even be addressed before. In this way, understanding the design leads to more intelligent decision-making and design space exploration. © 2012 AIAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, optimisation is an enabling technology in innovation. Multi-objective and multi-disciplinary design tools are essential in the engineering design process, and have been applied successfully in aerospace and turbomachinery applications extensively. These approaches give insight into the design space and identify the trade-offs between the competing performance measures satisfying a number of constraints at the same time. It is anticipated here that the same benefits can be obtained for the design of micro-scale combustors. In this paper, a multi-disciplinary automated design optimisation system was developed for this purpose, which comprises a commercial computational fluid dynamics package and a multi-objective variant of the Tabu Search optimisation algorithm. The main objectives that are considered in this study are to optimise the main micro-scale combustor design characteristics and to satisfy manufacturability considerations from the very beginning of the whole design operation. Hydrogen-air combustion as well as 14 geometrical and 2 operational parameters are used to describe and model the design problem. Two illustrative test cases will be presented, in which the most important device operational requirements are optimised, and the efficiency of the developed optimisation system is demonstrated. The identification, assessment and suitability of the optimum design configurations are discussed in detail. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators present potential advantages for planetary entry in missions of robotic and human exploration. The design of these structures face many engineering challenges, including complex deformable geometries, anisotropic material response, and coupled shockturbulence interactions. In this paper, we describe a comprehensive computational fluid-structure interaction study of an inflation cycle of a tension cone decelerator in supersonic flow and compare the simulations with earlier published experimental results. The aeroshell design and flow conditions closely match recent experiments conducted at Mach 2.5. The structural model is a 16-sided polygonal tension cone with seams between each segment. The computational model utilizes adaptive mesh refinement, large-eddy simulation, and shell mechanics with self-contact modeling to represent the flow and structure interaction. This study focuses on the dynamics of the structure as the inflation pressure varies gradually, and the behavior of forces experienced by the flexible and rigid (the payload capsule) structures. © 2011 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present some recent developments in automated computational modelling with an emphasis on solid mechanics applications. The automation process permits an abstract mathematical model of a physical problem to be translated into computer code rapidly and trivially, and can lead to computer code which is faster than hand-written and optimised code. Crucial to the approach is ensuring that mathematical abstractions inherent in the mathematical model are inherited by the software library. © Springer Science+Business Media B.V. 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid crystalline elastomers (LCEs) can undergo extremely large reversible shape changes when exposed to external stimuli, such as mechanical deformations, heating or illumination. The deformation of LCEs result from a combination of directional reorientation of the nematic director and entropic elasticity. In this paper, we study the energetics of initially flat, thin LCE membranes by stress driven reorientation of the nematic director. The energy functional used in the variational formulation includes contributions depending on the deformation gradient and the second gradient of the deformation. The deformation gradient models the in-plane stretching of the membrane. The second gradient regularises the non-convex membrane energy functional so that infinitely fine in-plane microstructures and infinitely fine out-of-plane membrane wrinkling are penalised. For a specific example, our computational results show that a non-developable surface can be generated from an initially flat sheet at cost of only energy terms resulting from the second gradients. That is, Gaussian curvature can be generated in LCE membranes without the cost of stretch energy in contrast to conventional materials. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical theorems in control theory are only of interest in so far as their assumptions relate to practical situations. The space of systems with transfer functions in ℋ∞, for example, has many advantages mathematically, but includes large classes of non-physical systems, and one must be careful in drawing inferences from results in that setting. Similarly, the graph topology has long been known to be the weakest, or coarsest, topology in which (1) feedback stability is a robust property (i.e. preserved in small neighbourhoods) and (2) the map from open-to-closed-loop transfer functions is continuous. However, it is not known whether continuity is a necessary part of this statement, or only required for the existing proofs. It is entirely possible that the answer depends on the underlying classes of systems used. The class of systems we concern ourselves with here is the set of systems that can be approximated, in the graph topology, by real rational transfer function matrices. That is, lumped parameter models, or those distributed systems for which it makes sense to use finite element methods. This is precisely the set of systems that have continuous frequency responses in the extended complex plane. For this class, we show that there is indeed a weaker topology; in which feedback stability is robust but for which the maps from open-to-closed-loop transfer functions are not necessarily continuous. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photonic crystals are materials that are used to control or manipulate the propagation of light through a medium for a desired application. Common fabrication methods to prepare photonic crystals are both costly and intricate. However, through a cost-effective laser-induced photochemical patterning, one-dimensional responsive and tuneable photonic crystals can easily be fabricated. These structures act as optical transducers and respond to external stimuli. These photonic crystals are generally made of a responsive hydrogel that can host metallic nanoparticles in the form of arrays. The hydrogel-based photonic crystal has the capability to alter its periodicity in situ but also recover its initial geometrical dimensions, thereby rendering it fully reversible and reusable. Such responsive photonic crystals have applications in various responsive and tuneable optical devices. In this study, we fabricated a pH-sensitive photonic crystal sensor through photochemical patterning and demonstrated computational simulations of the sensor through a finite element modelling technique in order to analyse its optical properties on varying the pattern and characteristics of the nanoparticle arrays within the responsive hydrogel matrix. Both simulations and experimental results show the wavelength tuneability of the sensor with good agreement. Various factors, including nanoparticle size and distribution within the hydrogel-based responsive matrices that directly affect the performance of the sensors, are also studied computationally. © 2014 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-phase computational fluid dynamics modelling is used to investigate the magnitude of different contributions to the wet steam losses in a three-stage model low pressure steam turbine. The thermodynamic losses (due to irreversible heat transfer across a finite temperature difference) and the kinematic relaxation losses (due to the frictional drag of the drops) are evaluated directly from the computational fluid dynamics simulation using a concept based on entropy production rates. The braking losses (due to the impact of large drops on the rotor) are investigated by a separate numerical prediction. The simulations show that in the present case, the dominant effect is the thermodynamic loss that accounts for over 90% of the wetness losses and that both the thermodynamic and the kinematic relaxation losses depend on the droplet diameter. The numerical results are brought into context with the well-known Baumann correlation, and a comparison with available measurement data in the literature is given. The ability of the numerical approach to predict the main wetness losses is confirmed, which permits the use of computational fluid dynamics for further studies on wetness loss correlations. © IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.