864 resultados para Communication networks
Resumo:
This paper proposes a high current impedance matching method for narrowband power-line communication (NPLC) systems. The impedance of the power-line channel is time and location variant; therefore, coupling circuitry and the channel are not usually matched. This not only results in poor signal integrity at the receiving end, but also leads to a higher transmission power requirement to secure the communication process. To offset this negative effect, a high-current adaptive impedance circuit to enable impedance matching in power-line networks is reported. The approach taken is to match the channel impedance of N-PLC systems is based on the General Impedance Converter (GIC). In order to achieve high current a special coupler in which the inductive impedance can be altered by adjusting a microcontroller controlled digital resistor is demonstrated. It is shown that the coupler works well with heavy load current in power line networks. It works in both low and high transmitting current modes, a current as high as 760 mA has been obtained. Besides, compared with other adaptive impedance couplers, the advantages include higher matching resolution and a simple control interface. Experimental results are presented to demonstrate the operation of the coupler. © 2011 IEEE.
Resumo:
The University of Bristol is studying the feasibility of deploying 40 Gbit/s optical time division multiplexed (OTDM) transmission networks to support new telecommunication services such the Internet and video-on-demand systems. Among the functional blocks being considered in the project are the optical pulse sources, signal multiplexers and demultiplexers, clock recovery subsystems, signal detection and dispersion accommodation methods.
Resumo:
Developments in Micro-Electro-Mechanical Systems (MEMS), wireless communication systems and ad-hoc networking have created new dimensions to improve asset management not only during the operational phase but throughout an asset's lifecycle based on using improved quality of information obtained with respect to two key aspects of an asset: its location and condition. In this paper, we present our experience as well as lessons learnt from building a prototype condition monitoring platform to demonstrate and to evaluate the use of COTS wireless sensor networks to develop a prototype condition monitoring platform with the aim of improving asset management by providing accurate and real-time information. © 2010 IEEE.
Resumo:
With increasing demands on storage devices in the modern communication environment, the storage area network (SAN) has evolved to provide a direct connection allowing these storage devices to be accessed efficiently. To optimize the performance of a SAN, a three-stage hybrid electronic/optical switching node architecture based on the concept of a MPLS label switching mechanism, aimed at serving as a multi-protocol label switching (MPLS) ingress label edge router (LER) for a SAN-enabled application, has been designed. New shutter-based free-space multi-channel optical switching cores are employed as the core switch fabric to solve the packet contention and switching path conflict problems. The system-level node architecture design constraints are evaluated through self-similar traffic sourced from real gigabit Ethernet network traces and storage systems. The extension performance of a SAN over a proposed WDM ring network, aimed at serving as an MPLS-enabled transport network, is also presented and demonstrated. © 2012 OSA.
Resumo:
The paper investigates the synchronization of a network of identical linear state-space models under a possibly time-varying and directed interconnection structure. The main result is the construction of a dynamic output feedback coupling that achieves synchronization if the decoupled systems have no exponentially unstable mode and if the communication graph is uniformly connected. The result can be interpreted as a generalization of classical consensus algorithms. Stronger conditions are shown to be sufficient-but to some extent, also necessary-to ensure synchronization with the diffusive static output coupling often considered in the literature. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
The paper investigates the synchronization of a network of identical linear time-invariant state-space models under a possibly time-varying and directed interconnection structure. The main result is the construction of a dynamic output feedback coupling that achieves synchronization if the decoupled systems have no exponentially unstable mode and if the communication graph is uniformly connected. Stronger conditions are shown to be sufficient - but to some extent, also necessary - to ensure synchronization with the diffusive static output coupling often considered in the literature. © 2008 IEEE.
Resumo:
LED-based carrierless amplitude and phase modulation is investigated for a multi-gigabit plastic optical fibre link. An FPGA-based 1.5 Gbit/s error free transmission over 50 m standard SI-POF using CAP64 is achieved, providing 2.9 dB power margin without forward error correction. © 2012 OSA.
Resumo:
LED-based carrierless amplitude and phase modulation is investigated for a multi-gigabit plastic optical fibre link. An FPGA-based 1.5 Gbit/s error free transmission over 50 m standard SI-POF using CAP64 is achieved, providing 2.9 dB power margin without forward error correction. © 2012 Optical Society of America.
Resumo:
We present a parametrically efficient method for measuring the entanglement of formation E-f in an arbitrarily given unknown two-qubit state rho(AB) by local operations and classical communication. The two observers, Alice and Bob, first perform some local operations on their composite systems separately, by which the desired global quantum states can be prepared. Then they estimate seven functions via two modified local quantum networks supplemented a classical communication. After obtaining these functions, Alice and Bob can determine the concurrence C and the entanglement of formation E-f.
Resumo:
We propose a more general method for detecting a set of entanglement measures, i.e., negativities, in an arbitrary tripartite quantum state by local operations and classical communication. To accomplish the detection task using this method, three observers do not need to perform partial transposition maps by the structural physical approximation; instead, they only need to collectively measure some functions via three local networks supplemented by a classical communication. With these functions, they are able to determine the set of negativities related to the tripartite quantum state.
Resumo:
We present a modified method for detecting the concurrence in an arbitrary two-qubit quantum state rho(AB) with local operations and classical communication. In this method, it is not necessary for the two observers to prepare the quantum state rho(AB) by the structural physical approximation. Their main task is to measure four specific functions via two local quantum networks. With these functions they can determine the concurrence and then the entanglement of formation.
Resumo:
Planar punch through heterojunction phototransistors with a novel emitter control electrode and ion- implanted isolation (CE-PTHPT) are investigated. The phototransistors have a working voltage of 3-10V and high sensitivity at low input power. The base of the transistor is completely depleted under operating condition. Base current is zero. The CE-PTHPT has an increased speed and a decreased noise. The novel CE-PTHPT has been fabricated in this paper. The optical gain of GaAlAs/GaAs CE-PTHPT for the incident light power 1.3 and 43nw with the wavelength of 0.8 mu m reached 1260 and 8108. The input noise current calculated is 5.46 x 10(-16) A/H-z(1/2). For polysilicon emitter CE-PTHPT, the optical gain is 3083 at the input power of 0.174 mu w. The optical gain of InGaAs/InP CE-PTHPT reaches 350 for an incident power of 0.3 mu w at the wavelength of 1.55 mu m. The CE-PTHPT detectors is promising as photo detectors for optical fiber communication system.
Resumo:
Si-based SiGe/Si strained MQW long-wavelength photodetectors (PD) with cycle type (Ring Shape) waveguide (CWG) and resonant-cavity-enhanced (RCE) structure have been investigated for the first time for improving the quantum efficiency and response time. The results show that the responsivities are higher than that of conventional PD with a same Ge content reported previously. In addition, RCE-PD has an obvious narrow band response with FWHM less than 6nm.
Resumo:
Communication: Conducting semi-interpenetrating network composites with low conductivity percolation threshold were synthesized from waterborne conducting polyaniline (cPAn) and melamine-urea resin, A perfect network of cPAn in the composite was observed by means of TEM (see Figure). The conductivity stability of cPAn in water was improved by confining the chain mobility of cPAn via in-situ crosslinking of melamine-urea resin. Cyclic voltammetry of the composites reveals electrochemical activities and reversibilities similarly to those of pure cPAn.
Resumo:
This technical report describes a new protocol, the Unique Token Protocol, for reliable message communication. This protocol eliminates the need for end-to-end acknowledgments and minimizes the communication effort when no dynamic errors occur. Various properties of end-to-end protocols are presented. The unique token protocol solves the associated problems. It eliminates source buffering by maintaining in the network at least two copies of a message. A token is used to decide if a message was delivered to the destination exactly once. This technical report also presents a possible implementation of the protocol in a worm-hole routed, 3-D mesh network.