875 resultados para Colony algorithms
Resumo:
SOUSA,M.B.C. et al. Reproductive Patterns and Birth Seasonality in a South-American Breeding Colony of Common Marmosets, Callithrix jacchus. Primates, v.40, n.2, p. 327-336, Apr. 1999.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Agricultores no médio Vale do Paranapanema têm relatado problemas com bandos de pombas (Zenaida auriculata) que se alimentam de cotilédones de soja na época do plantio. Na região do município de Tarumã, SP, essas aves se reproduzem em uma colônia situada em um canavial, e sua dieta é composta de 70% do peso seco por 4 grãos cultivados (em ordem de importância: milho, trigo, arroz e soja). As sementes de três invasoras (Euphorbia heterophylla, Brachiaria plantaginea e Commelina benghalensis) são importantes. Essa informação sugere que as pombas se adaptaram particularmente bem à paisagem criada pelas práticas agrícolas da região, aproveitando vários alimentos oferecidos.
Resumo:
Markovian algorithms for estimating the global maximum or minimum of real valued functions defined on some domain Omega subset of R-d are presented. Conditions on the search schemes that preserve the asymptotic distribution are derived. Global and local search schemes satisfying these conditions are analysed and shown to yield sharper confidence intervals when compared to the i.i.d. case.
Resumo:
In the minimization of tool switches problem we seek a sequence to process a set of jobs so that the number of tool switches required is minimized. In this work different variations of a heuristic based on partial ordered job sequences are implemented and evaluated. All variations adopt a depth first strategy of the enumeration tree. The computational test results indicate that good results can be obtained by a variation which keeps the best three branches at each node of the enumeration tree, and randomly choose, among all active nodes, the next node to branch when backtracking.
Resumo:
The optimized allocation of protective devices in strategic points of the circuit improves the quality of the energy supply and the system reliability index. This paper presents a nonlinear integer programming (NLIP) model with binary variables, to deal with the problem of protective device allocation in the main feeder and all branches of an overhead distribution circuit, to improve the reliability index and to provide customers with service of high quality and reliability. The constraints considered in the problem take into account technical and economical limitations, such as coordination problems of serial protective devices, available equipment, the importance of the feeder and the circuit topology. The use of genetic algorithms (GAs) is proposed to solve this problem, using a binary representation that does (1) or does not (0) show allocation of protective devices (reclosers, sectionalizers and fuses) in predefined points of the circuit. Results are presented for a real circuit (134 busses), with the possibility of protective device allocation in 29 points. Also the ability of the algorithm in finding good solutions while improving significantly the indicators of reliability is shown. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria
Resumo:
This work seeks to propose and evaluate a change to the Ant Colony Optimization based on the results of experiments performed on the problem of Selective Ride Robot (PRS, a new problem, also proposed in this paper. Four metaheuristics are implemented, GRASP, VNS and two versions of Ant Colony Optimization, and their results are analyzed by running the algorithms over 32 instances created during this work. The metaheuristics also have their results compared to an exact approach. The results show that the algorithm implemented using the GRASP metaheuristic show good results. The version of the multicolony ant colony algorithm, proposed and evaluated in this work, shows the best results
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)