925 resultados para Coherence function, X
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with k(cat) values of 27 and 11 s(-1), respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 A and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.
Resumo:
Pelvic organ prolapse is a common condition among women with a prevalence of 11% and may affect the anterior, posterior, or apical compartment with a negative impact on sexual function.
Resumo:
OBJECTIVE To determine the practicability and accuracy of central corneal thickness (CCT) measurements in living chicks utilizing a noncontact, high-speed optical low-coherence reflectometer (OLCR) mounted on a slit lamp. ANIMALS STUDIED Twelve male chicks (Gallus gallus domesticus). Procedures Measurements of CCT were obtained in triplicate in 24 eyes of twelve 1-day-old anaesthetized chicks using OLCR. Every single measurement taken by OLCR consisted of the average result of 20 scans obtained within seconds. Additionally, corneal thickness was determined histologically after immersion fixation in Karnovsky's solution alone (20 eyes) or with a previous injection of the fixative into the anterior chamber before enucleation (4 eyes). RESULTS Central corneal thickness measurements using OLCR in 1-day-old living chicks provide a rapid and feasible examination technique. Mean CCT measured with OLCR (189.7 ± 3.34 μm) was significantly lower than histological measurements (242.1 ± 47.27 μm) in eyes with fixation in Karnovsky's solution (P = 0.0005). In eyes with additional injection of Karnovsky's fixative into the anterior chamber, mean histologically determined CCT was 195.2 ± 8.25 μm vs. 191.9 ± 8.90 μm with OLCR. A trend for a lower variance was found compared to the eyes that had only been immersion fixed. CONCLUSION Optical low-coherence reflectometry is an accurate examination technique to measure in vivo CCT in the eye of newborn chicks. The knowledge of the thickness of the chick cornea and the ability to obtain noninvasive, noncontact measurements of CCT in the living animal may be of interest for research and development of eye diseases in chick models.
Resumo:
Both subclinical hypothyroidism and the metabolic syndrome have been associated with increased risk of coronary heart disease events. It is unknown whether the prevalence and incidence of metabolic syndrome is higher as TSH levels increase, or in individuals with subclinical hypothyroidism. We sought to determine the association between thyroid function and the prevalence and incidence of the metabolic syndrome in a cohort of older adults.
Resumo:
Female genital mutilation (FGM) is defined by the World Health Organization (WHO) as all procedures that involve partial or total removal of the female external genitalia and/or injury to the female genital organs for cultural or any other non-therapeutic reasons.
Resumo:
Up to 10% of patients with severe immune-mediated drug hypersensitivity reactions have tendencies to develop multiple drug hypersensitivities (MDH). The reason why certain individuals develop MDH and the underlying pathomechanism are unclear. We investigated different T cell subpopulations in MDH patients and compared them with patients allergic to a single drug and with healthy controls (HC).
Resumo:
Objective Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ). Methods and Results Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. Conclusions ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.
Resumo:
The relevance of tissue oxygenation in the pathogenesis of organ dysfunction during sepsis is controversial. We compared oxygen transport, lactate metabolism, and mitochondrial function in pigs with septic shock, cardiogenic shock, or hypoxic hypoxia.
Indications for a protective function of beta2-glycoprotein I in thrombotic thrombocytopenic purpura
Resumo:
It has been shown that β(2) -glycoprotein I (β(2) GPI) interacts with von Willebrand factor (VWF) in a glycoprotein (GP)Ib binding state. Given the presence of active VWF multimers in thrombotic thrombocytopenic purpura (TTP), we speculated that β(2) GPI might play a role in TTP. We found that β(2) GPI plasma levels were significantly lower in acute and remission TTP patients than in normal controls, showing a direct correlation with ADAMTS 13 levels and an inverse correlation with the extent of VWF activation. In vitro flow experiments demonstrated that β(2) GPI can block platelet adhesion to endothelial cell-derived VWF strings. We confirmed the direct binding of β(2) GPI to VWF by surface plasmon resonance, and determined that domain I of β(2) GPI is the binding site of VWF A1 domain. Adhesion of β(2) GPI to erythrocytes and platelets was increased in the presence of active VWF, indicating that β(2) GPI may be cleared from the circulation during TTP episodes together with blood cells. Our findings suggest that β(2) GPI may protect from the effects of hyper-functional VWF by inhibiting its interaction with platelets.
Resumo:
The histidine triad nucleotide-binding (Hint2) protein is a mitochondrial adenosine phosphoramidase expressed in liver and pancreas. Its physiological function is unknown. To elucidate the role of Hint2 in liver physiology, the Hint2 gene was deleted. Hint2(-/-) and Hint2(+/+) mice were generated in a mixed C57Bl6/J x 129Sv background. At 20 weeks, the phenotypic changes in Hint2(-/-) relative to Hint2(+/+) mice were an accumulation of hepatic triglycerides, decreased tolerance to glucose, a defective counter-regulatory response to insulin-provoked hypoglycaemia, an increase in plasma interprandial insulin but a decrease in glucose stimulated insulin secretion and defective thermoregulation upon fasting. Leptin mRNA in adipose tissue and plasma leptin were elevated. In mitochondria from Hint2(-/-) hepatocytes, state 3 respiration was decreased, a finding confirmed in HepG2 cells where HINT2 mRNA was silenced. The linked complex II to III electron transfer was decreased in Hint2(-/-) mitochondria, which was accompanied by a lower content of coenzyme Q. HIF-2α expression and the generation of reactive oxygen species were increased. Electron microscopy of mitochondria in Hint2(-/-) mice aged 12 months revealed clustered, fused organelles. The hepatic activities of 3-hydroxyacyl-CoA dehydrogenase short chain and glutamate dehydrogenase (GDH) were decreased by 68% and 60%, respectively, without a change in protein expression. GDH activity was similarly decreased in HINT2-silenced HepG2 cells. When measured in the presence of purified sirtuin 3, latent GDH activity was recovered (126% in Hint2(-/-) vs. 83% in Hint2(+/+) ). This suggests a greater extent of acetylation in Hint2(-/-) than in Hint2(+/+) . Conlusions: Hint2 positively regulates mitochondrial lipid metabolism and respiration, and glucose homeostasis. The absence of Hint2 provokes mitochondrial deformities and a change in the pattern of acetylation of selected proteins. (HEPATOLOGY 2012.).
Resumo:
Ectodomain shedding at the cell surface is a major mechanism to regulate the extracellular and circulatory concentration or the activities of signaling proteins at the plasma membrane. Human meprin β is a 145-kDa disulfide-linked homodimeric multidomain type-I membrane metallopeptidase that sheds membrane-bound cytokines and growth factors, thereby contributing to inflammatory diseases, angiogenesis, and tumor progression. In addition, it cleaves amyloid precursor protein (APP) at the β-secretase site, giving rise to amyloidogenic peptides. We have solved the X-ray crystal structure of a major fragment of the meprin β ectoprotein, the first of a multidomain oligomeric transmembrane sheddase, and of its zymogen. The meprin β dimer displays a compact shape, whose catalytic domain undergoes major rearrangement upon activation, and reveals an exosite and a sugar-rich channel, both of which possibly engage in substrate binding. A plausible structure-derived working mechanism suggests that substrates such as APP are shed close to the plasma membrane surface following an "N-like" chain trace.
Resumo:
We previously showed that lifetime cumulative lead dose, measured as lead concentration in the tibia bone by X-ray fluorescence, was associated with persistent and progressive declines in cognitive function and with decreases in MRI-based brain volumes in former lead workers. Moreover, larger region-specific brain volumes were associated with better cognitive function. These findings motivated us to explore a novel application of path analysis to evaluate effect mediation. Voxel-wise path analysis, at face value, represents the natural evolution of voxel-based morphometry methods to answer questions of mediation. Application of these methods to the former lead worker data demonstrated potential limitations in this approach where there was a tendency for results to be strongly biased towards the null hypothesis (lack of mediation). Moreover, a complimentary analysis using anatomically-derived regions of interest volumes yielded opposing results, suggesting evidence of mediation. Specifically, in the ROI-based approach, there was evidence that the association of tibia lead with function in three cognitive domains was mediated through the volumes of total brain, frontal gray matter, and/or possibly cingulate. A simulation study was conducted to investigate whether the voxel-wise results arose from an absence of localized mediation, or more subtle defects in the methodology. The simulation results showed the same null bias evidenced as seen in the lead workers data. Both the lead worker data results and the simulation study suggest that a null-bias in voxel-wise path analysis limits its inferential utility for producing confirmatory results.
Resumo:
In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded alpha1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.