970 resultados para Code Division Multiple Access System
Resumo:
Small-scale farmers in the Brazilian Amazon collectively hold tenure over more than 12 million ha of permanent forest reserves, as required by the Forest Code. The trade-off between forest conservation and other land uses entails opportunity costs for them and for the country, which have not been sufficiently studied. We assessed the potential income generated by multiple use forest management for farmers and compared it to the income potentially derived from six other agricultural land uses. Income from the forest was from (i) logging, carried out by a logging company in partnership with farmers' associations; and (ii) harvesting the seeds of Carapa guianensis (local name andiroba) for the production of oil. We then compared the income generated by multiple-use forest management with the income from different types of agrarian systems. According to our calculations in this study, the mean annual economic benefits from multiple forest use are the same as the least productive agrarian system, but only 25% of the annual income generated by the most productive system. Although the income generated by logging may be considered low when calculated on an annual basis and compared to incomes generated by agriculture, the one-time payment after logging is significant (US$5,800 to US$33,508) and could be used to implement more intensive and productive cropping systems such as planting black pepper. The income from forest management could also be used to establish permanent fields in deforested areas for highly productive annual crops using conservation agriculture techniques. These techniques are alternatives to the traditional land use based on periodic clearing of the forest. Nevertheless, the shift in current practices towards adoption of more sustainable conservation agriculture techniques will also require the technical and legal support of the State to help small farmers apply these alternatives, which aim to integrate forest management in sustainable agricultural production systems.
Resumo:
We report the discovery of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 +/- 5 AU (HD 1160 B) and 533 +/- 25 AU (HD 1160 C) by the Gemini NICI Planet-Finding Campaign. Very Large Telescope images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50(-40)(+50) Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 +/- 0.5 star with an estimated mass of 0.22(-0.04)(+0.03) M-circle dot, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33(-9)(+12) M-Jup. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass companion were HD 1160 A to be slightly less massive than the Sun.
Resumo:
Background: Aortic aneurysm and dissection are important causes of death in older people. Ruptured aneurysms show catastrophic fatality rates reaching near 80%. Few population-based mortality studies have been published in the world and none in Brazil. The objective of the present study was to use multiple-cause-of-death methodology in the analysis of mortality trends related to aortic aneurysm and dissection in the state of Sao Paulo, between 1985 and 2009. Methods: We analyzed mortality data from the Sao Paulo State Data Analysis System, selecting all death certificates on which aortic aneurysm and dissection were listed as a cause-of-death. The variables sex, age, season of the year, and underlying, associated or total mentions of causes of death were studied using standardized mortality rates, proportions and historical trends. Statistical analyses were performed by chi-square goodness-of-fit and H Kruskal-Wallis tests, and variance analysis. The joinpoint regression model was used to evaluate changes in age-standardized rates trends. A p value less than 0.05 was regarded as significant. Results: Over a 25-year period, there were 42,615 deaths related to aortic aneurysm and dissection, of which 36,088 (84.7%) were identified as underlying cause and 6,527 (15.3%) as an associated cause-of-death. Dissection and ruptured aneurysms were considered as an underlying cause of death in 93% of the deaths. For the entire period, a significant increased trend of age-standardized death rates was observed in men and women, while certain non-significant decreases occurred from 1996/2004 until 2009. Abdominal aortic aneurysms and aortic dissections prevailed among men and aortic dissections and aortic aneurysms of unspecified site among women. In 1985 and 2009 death rates ratios of men to women were respectively 2.86 and 2.19, corresponding to a difference decrease between rates of 23.4%. For aortic dissection, ruptured and non-ruptured aneurysms, the overall mean ages at death were, respectively, 63.2, 68.4 and 71.6 years; while, as the underlying cause, the main associated causes of death were as follows: hemorrhages (in 43.8%/40.5%/13.9%); hypertensive diseases (in 49.2%/22.43%/24.5%) and atherosclerosis (in 14.8%/25.5%/15.3%); and, as associated causes, their principal overall underlying causes of death were diseases of the circulatory (55.7%), and respiratory (13.8%) systems and neoplasms (7.8%). A significant seasonal variation, with highest frequency in winter, occurred in deaths identified as underlying cause for aortic dissection, ruptured and non-ruptured aneurysms. Conclusions: This study introduces the methodology of multiple-causes-of-death to enhance epidemiologic knowledge of aortic aneurysm and dissection in São Paulo, Brazil. The results presented confer light to the importance of mortality statistics and the need for epidemiologic studies to understand unique trends in our own population.
Resumo:
[EN] Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity.
Resumo:
Introduction and Background: Multiple system atrophy (MSA) is a sporadic, adult-onset, progressive neurodegenerative disease characterized clinically by parkinsonism, cerebellar ataxia, and autonomic failure. We investigated cognitive functions longitudinally in a group of probable MSA patients, matching data with sleep parameters. Patients and Methods: 10 patients (7m/3f) underwent a detailed interview, a general and neurological examination, laboratory exams, MRI scans, a cardiovascular reflexes study, a battery of neuropsychological tests, and video-polysomnographic recording (VPSG). Patients were revaluated (T1) a mean of 16±5 (range: 12-28) months after the initial evaluation (T0). At T1, the neuropsychological assessment and VPSG were repeated. Results: The mean patient age was 57.8±6.4 years (range: 47-64) with a mean age at disease onset of 53.2±7.1 years (range: 43-61) and symptoms duration at T0 of 60±48 months (range: 12-144). At T0, 7 patients showed no cognitive deficits while 3 patients showed isolated cognitive deficits. At T1, 1 patient worsened developing multiple cognitive deficits from a normal condition. At T0 and T1, sleep efficiency was reduced, REM latency increased, NREM sleep stages 1-2 slightly increased. Comparisons between T1 and T0 showed a significant worsening in two tests of attention and no significant differences of VPSG parameters. No correlation was found between neuropsychological results and VPSG findings or RBD duration. Discussion and Conclusions: The majority of our patients do not show any cognitive deficits at T0 and T1, while isolated cognitive deficits are present in the remaining patients. Attention is the cognitive function which significantly worsened. Our data confirm the previous findings concerning the prevalence, type and the evolution of cognitive deficits in MSA. Regarding the developing of a condition of dementia, our data did not show a clear-cut diagnosis of dementia. We confirm a mild alteration of sleep structure. RBD duration does not correlate with neuropsychological findings.
Resumo:
Body-centric communications are emerging as a new paradigm in the panorama of personal communications. Being concerned with human behaviour, they are suitable for a wide variety of applications. The advances in the miniaturization of portable devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. This thesis investigates the human impact on body-centric communications under its distinctive aspects. First of all, the unique propagation environment defined by the body is described through a scenario-based channel modeling approach, according to the communication scenario considered, i.e., on- or on- to off-body. The novelty introduced pertains to the description of radio channel features accounting for multiple sources of variability at the same time. Secondly, the importance of a proper channel characterisation is shown integrating the on-body channel model in a system level simulator, allowing a more realistic comparison of different Physical and Medium Access Control layer solutions. Finally, the structure of a comprehensive simulation framework for system performance evaluation is proposed. It aims at merging in one tool, mobility and social features typical of the human being, together with the propagation aspects, in a scenario where multiple users interact sharing space and resources.
Resumo:
Glioblastoma multiforme (GBM) is the most common and most aggressive astrocytic tumor of the central nervous system (CNS) in adults. The standard treatment consisting of surgery, followed by a combinatorial radio- and chemotherapy, is only palliative and prolongs patient median survival to 12 to 15 months. The tumor subpopulation of stem cell-like glioma-initiating cells (GICs) shows resistance against radiation as well as chemotherapy, and has been suggested to be responsible for relapses of more aggressive tumors after therapy. The efficacy of immunotherapies, which exploit the immune system to specifically recognize and eliminate malignant cells, is limited due to strong immunosuppressive activities of the GICs and the generation of a specialized protective microenvironment. The molecular mechanisms underlying the therapy resistance of GICs are largely unknown. rnThe first aim of this study was to identify immune evasion mechanisms in GICs triggered by radiation. A model was used in which patient-derived GICs were treated in vitro with fractionated ionizing radiation (2.5 Gy in 7 consecutive passages) to select for a more radio-resistant phenotype. In the model cell line 1080, this selection process resulted in increased proliferative but diminished migratory capacities in comparison to untreated control GICs. Furthermore, radio-selected GICs downregulated various proteins involved in antigen processing and presentation, resulting in decreased expression of MHC class I molecules on the cellular surface and diminished recognition potential by cytotoxic CD8+ T cells. Thus, sub-lethal fractionated radiation can promote immune evasion and hamper the success of adjuvant immunotherapy. Among several immune-associated proteins, interferon-induced transmembrane protein 3 (IFITM3) was found to be upregulated in radio-selected GICs. While high expression of IFITM3 was associated with a worse overall survival of GBM patients (TCGA database) and increased proliferation and migration of differentiated glioma cell lines, a strong contribution of IFITM3 to proliferation in vitro as well as tumor growth and invasiveness in a xenograft model could not be observed. rnMultiple sclerosis (MS) is the most common autoimmune disease of the CNS in young adults of the Western World, which leads to progressive disability in genetically susceptible individuals, possibly triggered by environmental factors. It is assumed that self-reactive, myelin-specific T helper cell 1 (Th1) and Th17 cells, which have escaped the control mechanisms of the immune system, are critical in the pathogenesis of the human disease and its animal model experimental autoimmune encephalomyelitis (EAE). It was observed that in vitro differentiated interleukin 17 (IL-17) producing Th17 cells co-expressed the Th1-phenotypic cytokine Interferon-gamma (IFN-γ) in combination with the two respective lineage-associated transcription factors RORγt and T-bet after re-isolation from the CNS of diseased mice. Pathogenic molecular mechanisms that render a CD4+ T cell encephalitogenic have scarcely been investigated up to date. rnIn the second part of the thesis, whole transcriptional changes occurring in in vitro differentiated Th17 cells in the course of EAE were analyzed. Evaluation of signaling networks revealed an overrepresentation of genes involved in communication between the innate and adaptive immune system and metabolic alterations including cholesterol biosynthesis. The transcription factors Cebpa, Fos, Klf4, Nfatc1 and Spi1, associated with thymocyte development and naïve T cells were upregulated in encephalitogenic CNS-isolated CD4+ T cells, proposing a contribution to T cell plasticity. Correlation of the murine T-cell gene expression dataset to putative MS risk genes, which were selected based on their proximity (± 500 kb; ensembl database, release 75) to the MS risk single nucleotide polymorphisms (SNPs) proposed by the most recent multiple sclerosis GWAS in 2011, revealed that 67.3% of the MS risk genes were differentially expressed in EAE. Expression patterns of Bach2, Il2ra, Irf8, Mertk, Odf3b, Plek, Rgs1, Slc30a7, and Thada were confirmed in independent experiments, suggesting a contribution to T cell pathogenicity. Functional analysis of Nfatc1 revealed that Nfatc1-deficient CD4+ T cells were restrained in their ability to induce clinical signs of EAE. Nfatc1-deficiency allowed proper T cell activation, but diminished their potential to fully differentiate into Th17 cells and to express high amounts of lineage cytokines. As the inducible Nfatc1/αA transcript is distinct from the other family members, it could represent an interesting target for therapeutic intervention in MS.rn
Resumo:
The ACCESS trial examined the 12-month effectiveness of continuous therapeutic assertive community treatment (ACT) as part of integrated care compared to standard care in a catchment area comparison design in patients with schizophrenia spectrum disorders treated with quetiapine immediate release.
Resumo:
Background For reliable assessment of ventilation inhomogeneity, multiple-breath washout (MBW) systems should be realistically validated. We describe a new lung model for in vitro validation under physiological conditions and the assessment of a new nitrogen (N2)MBW system. Methods The N2MBW setup indirectly measures the N2 fraction (FN2) from main-stream carbon dioxide (CO2) and side-stream oxygen (O2) signals: FN2 = 1−FO2−FCO2−FArgon. For in vitro N2MBW, a double chamber plastic lung model was filled with water, heated to 37°C, and ventilated at various lung volumes, respiratory rates, and FCO2. In vivo N2MBW was undertaken in triplets on two occasions in 30 healthy adults. Primary N2MBW outcome was functional residual capacity (FRC). We assessed in vitro error (√[difference]2) between measured and model FRC (100–4174 mL), and error between tests of in vivo FRC, lung clearance index (LCI), and normalized phase III slope indices (Sacin and Scond). Results The model generated 145 FRCs under BTPS conditions and various breathing patterns. Mean (SD) error was 2.3 (1.7)%. In 500 to 4174 mL FRCs, 121 (98%) of FRCs were within 5%. In 100 to 400 mL FRCs, the error was better than 7%. In vivo FRC error between tests was 10.1 (8.2)%. LCI was the most reproducible ventilation inhomogeneity index. Conclusion The lung model generates lung volumes under the conditions encountered during clinical MBW testing and enables realistic validation of MBW systems. The new N2MBW system reliably measures lung volumes and delivers reproducible LCI values.
Resumo:
The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.
Resumo:
A multiple source model (MSM) for the 6 MV beam of a Varian Clinac 2300 C/D was developed by simulating radiation transport through the accelerator head for a set of square fields using the GEANT Monte Carlo (MC) code. The corresponding phase space (PS) data enabled the characterization of 12 sources representing the main components of the beam defining system. By parametrizing the source characteristics and by evaluating the dependence of the parameters on field size, it was possible to extend the validity of the model to arbitrary rectangular fields which include the central 3 x 3 cm2 field without additional precalculated PS data. Finally, a sampling procedure was developed in order to reproduce the PS data. To validate the MSM, the fluence, energy fluence and mean energy distributions determined from the original and the reproduced PS data were compared and showed very good agreement. In addition, the MC calculated primary energy spectrum was verified by an energy spectrum derived from transmission measurements. Comparisons of MC calculated depth dose curves and profiles, using original and PS data reproduced by the MSM, agree within 1% and 1 mm. Deviations from measured dose distributions are within 1.5% and 1 mm. However, the real beam leads to some larger deviations outside the geometrical beam area for large fields. Calculated output factors in 10 cm water depth agree within 1.5% with experimentally determined data. In conclusion, the MSM produces accurate PS data for MC photon dose calculations for the rectangular fields specified.
Resumo:
As the performance gap between microprocessors and memory continues to increase, main memory accesses result in long latencies which become a factor limiting system performance. Previous studies show that main memory access streams contain significant localities and SDRAM devices provide parallelism through multiple banks and channels. These locality and parallelism have not been exploited thoroughly by conventional memory controllers. In this thesis, SDRAM address mapping techniques and memory access reordering mechanisms are studied and applied to memory controller design with the goal of reducing observed main memory access latency. The proposed bit-reversal address mapping attempts to distribute main memory accesses evenly in the SDRAM address space to enable bank parallelism. As memory accesses to unique banks are interleaved, the access latencies are partially hidden and therefore reduced. With the consideration of cache conflict misses, bit-reversal address mapping is able to direct potential row conflicts to different banks, further improving the performance. The proposed burst scheduling is a novel access reordering mechanism, which creates bursts by clustering accesses directed to the same rows of the same banks. Subjected to a threshold, reads are allowed to preempt writes and qualified writes are piggybacked at the end of the bursts. A sophisticated access scheduler selects accesses based on priorities and interleaves accesses to maximize the SDRAM data bus utilization. Consequentially burst scheduling reduces row conflict rate, increasing and exploiting the available row locality. Using a revised SimpleScalar and M5 simulator, both techniques are evaluated and compared with existing academic and industrial solutions. With SPEC CPU2000 benchmarks, bit-reversal reduces the execution time by 14% on average over traditional page interleaving address mapping. Burst scheduling also achieves a 15% reduction in execution time over conventional bank in order scheduling. Working constructively together, bit-reversal and burst scheduling successfully achieve a 19% speedup across simulated benchmarks.