758 resultados para Cloud Computing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the Accurate Google Cloud Simulator (AGOCS) – a novel high-fidelity Cloud workload simulator based on parsing real workload traces, which can be conveniently used on a desktop machine for day-to-day research. Our simulation is based on real-world workload traces from a Google Cluster with 12.5K nodes, over a period of a calendar month. The framework is able to reveal very precise and detailed parameters of the executed jobs, tasks and nodes as well as to provide actual resource usage statistics. The system has been implemented in Scala language with focus on parallel execution and an easy-to-extend design concept. The paper presents the detailed structural framework for AGOCS and discusses our main design decisions, whilst also suggesting alternative and possibly performance enhancing future approaches. The framework is available via the Open Source GitHub repository.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy-efficient computing remains a critical challenge across the wide range of future data-processing engines — from ultra-low-power embedded systems to servers, mainframes, and supercomputers. In addition, the advent of cloud and mobile computing as well as the explosion of IoT technologies have created new research challenges in the already complex, multidimensional space of modern and future computer systems. These new research challenges led to the establishment of the IEEE Rebooting Computing Initiative, which specifically addresses novel low-power solutions and technologies as one of the main areas of concern.With this in mind, we thought it timely to survey the state of the art of energy-efficient computing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cloud-based applications employ a data centre as a central server to process data that is generated by edge devices, such as smartphones, tablets and wearables. This model places ever increasing demands on communication and computational infrastructure with inevitable adverse effect on Quality-of-Service and Experience. The concept of Edge Computing is predicated on moving some of this computational load towards the edge of the network to harness computational capabilities that are currently untapped in edge nodes, such as base stations, routers and switches. This position paper considers the challenges and opportunities that arise out of this new direction in the computing landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Provenance plays a pivotal in tracing the origin of something and determining how and why something had occurred. With the emergence of the cloud and the benefits it encompasses, there has been a rapid proliferation of services being adopted by commercial and government sectors. However, trust and security concerns for such services are on an unprecedented scale. Currently, these services expose very little internal working to their customers; this can cause accountability and compliance issues especially in the event of a fault or error, customers and providers are left to point finger at each other. Provenance-based traceability provides a mean to address part of this problem by being able to capture and query events occurred in the past to understand how and why it took place. However, due to the complexity of the cloud infrastructure, the current provenance models lack the expressibility required to describe the inner-working of a cloud service. For a complete solution, a provenance-aware policy language is also required for operators and users to define policies for compliance purpose. The current policy standards do not cater for such requirement. To address these issues, in this paper we propose a provenance (traceability) model cProv, and a provenance-aware policy language (cProvl) to capture traceability data, and express policies for validating against the model. For implementation, we have extended the XACML3.0 architecture to support provenance, and provided a translator that converts cProvl policy and request into XACML type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing dependency of everyday life on mobile devices also increases the number and complexity of computing tasks to be supported by these devices. However, the inherent requirement of mobility restricts them from being resources rich both in terms of energy (battery capacity) and other computing resources such as processing capacity, memory and other resources. This thesis looks into cyber foraging technique of offloading computing tasks. Various experiments on android mobile devices are carried out to evaluate offloading benefits in terms of sustainability advantage, prolonging battery life and augmenting the performance of mobile devices. This thesis considers two scenarios of cyber foraging namely opportunistic offloading and competitive offloading. These results show that the offloading scenarios are important for both green computing and resource augmentation of mobile devices. A significant advantage in battery life gain and performance enhancement is obtained. Moreover, cyber foraging is proved to be efficient in minimizing energy consumption per computing tasks. The work is based on scavenger cyber foraging system. In addition, the work can be used as a basis for studying cyber foraging and other similar approaches such as mobile cloud/edge computing for internet of things devices and improving the user experiences of applications by minimizing latencies through the use of potential nearby surrogates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executing a cloud or aerosol physical properties retrieval algorithm from controlled synthetic data is an important step in retrieval algorithm development. Synthetic data can help answer questions about the sensitivity and performance of the algorithm or aid in determining how an existing retrieval algorithm may perform with a planned sensor. Synthetic data can also help in solving issues that may have surfaced in the retrieval results. Synthetic data become very important when other validation methods, such as field campaigns,are of limited scope. These tend to be of relatively short duration and often are costly. Ground stations have limited spatial coverage whilesynthetic data can cover large spatial and temporal scales and a wide variety of conditions at a low cost. In this work I develop an advanced cloud and aerosol retrieval simulator for the MODIS instrument, also known as Multi-sensor Cloud and Aerosol Retrieval Simulator (MCARS). In a close collaboration with the modeling community I have seamlessly combined the GEOS-5 global climate model with the DISORT radiative transfer code, widely used by the remote sensing community, with the observations from the MODIS instrument to create the simulator. With the MCARS simulator it was then possible to solve the long standing issue with the MODIS aerosol optical depth retrievals that had a low bias for smoke aerosols. MODIS aerosol retrieval did not account for effects of humidity on smoke aerosols. The MCARS simulator also revealed an issue that has not been recognized previously, namely,the value of fine mode fraction could create a linear dependence between retrieved aerosol optical depth and land surface reflectance. MCARS provided the ability to examine aerosol retrievals against “ground truth” for hundreds of thousands of simultaneous samples for an area covered by only three AERONET ground stations. Findings from MCARS are already being used to improve the performance of operational MODIS aerosol properties retrieval algorithms. The modeling community will use the MCARS data to create new parameterizations for aerosol properties as a function of properties of the atmospheric column and gain the ability to correct any assimilated retrieval data that may display similar dependencies in comparisons with ground measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a general purpose cloud system efficiencies are yet to be had from supporting diverse applications and their requirements within a storage system used for a private cloud. Supporting such diverse requirements poses a significant challenge in a storage system that supports fine grained configuration on a variety of parameters. This paper uses the Ceph distributed file system, and in particular its global parameters, to show how a single changed parameter can effect the performance for a range of access patterns when tested with an OpenStack cloud system.