879 resultados para Climatic conditions
Resumo:
The Zagros oak forests in Western Iran are critically important to the sustainability of the region. These forests have undergone dramatic declines in recent decades. We evaluated the utility of the non-parametric Random Forest classification algorithm for land cover classification of Zagros landscapes, and selected the best spatial and spectral predictive variables. The algorithm resulted in high overall classification accuracies (>85%) and also equivalent classification accuracies for the datasets from the three different sensors. We evaluated the associations between trends in forest area and structure with trends in socioeconomic and climatic conditions, to identify the most likely driving forces creating deforestation and landscape structure change. We used available socioeconomic (urban and rural population, and rural income), and climatic (mean annual rainfall and mean annual temperature) data for two provinces in northern Zagros. The most correlated driving force of forest area loss was urban population, and climatic variables to a lesser extent. Landscape structure changes were more closely associated with rural population. We examined the effects of scale changes on the results from spatial pattern analysis. We assessed the impacts of eight years of protection in a protected area in northern Zagros at two different scales (both grain and extent). The effects of protection on the amount and structure of forests was scale dependent. We evaluated the nature and magnitude of changes in forest area and structure over the entire Zagros region from 1972 to 2009. We divided the Zagros region in 167 Landscape Units and developed two measures— Deforestation Sensitivity (DS) and Connectivity Sensitivity (CS) — for each landscape unit as the percent of the time steps that forest area and ECA experienced a decrease of greater than 10% in either measure. A considerable loss in forest area and connectivity was detected, but no sudden (nonlinear) changes were detected at the spatial and temporal scale of the study. Connectivity loss occurred more rapidly than forest loss due to the loss of connecting patches. More connectivity was lost in southern Zagros due to climatic differences and different forms of traditional land use.
Resumo:
Analyses of pollen, macrofossils and microscopic charcoal in the sediment of a small sub-alpine lake (Karakol, Kyrgyzstan) provide new data to reconstruct the vegetation history of the Kungey Alatau spruce forest during the late-Holocene, i.e. the past 4,000 years. The pollen data suggest that Picea schrenkiana F. and M. was the dominant tree in this region from the beginning of the record. The pollen record of pronounced die-backs of the forests, along with lithostratigraphical evidence, points to possible climatic cooling (and/or drying) around 3,800 cal year B.P., and between 3,350 and 2,520 cal year B.P., with a culmination at 2,800-2,600 cal B.P., although stable climatic conditions are reported for this region for the past 3,000-4,000 years in previous studies. From 2,500 to 190 cal year B.P. high pollen values of P. schrenkiana suggest rather closed and dense forests under the environmental conditions of that time. A marked decline in spruce forests occurred with the onset of modern human activities in the region from 190 cal year B.P. These results show that the present forests are anthropogenically reduced and represent only about half of their potential natural extent. As P. schrenkiana is a species endemic to the western Tien Shan, it is most likely that its refugium was confined to this region. However, our palaeoecological record is too recent to address this hypothesis thoroughly.
Resumo:
Orphan- or understudied-crops are mostly staple food crops in developing world. They are broadly classified under cereals, legumes, root crops, fruits and vegetables. These under-researched crops contribute to the diet of a large portion of resource-poor consumers and at the same time generate income for small-holder farmers in developing countries, particularly in Africa. In addition, they perform better than major crops of the world under extreme soil and climatic conditions. However, orphan crops are not without problems. Due to lack of scientific investigation, most of them produce low yields while others have a variety of toxins that affect the health of consumers. Here, we present some highlights on the status and future perspectives of the Tef Biotechnology Project that employs modern improvement technique in order to genetically improve tef (Eragrostis tef), one of the most important orphan crop in Africa. A reverse genetics approach known as TILLING (Targeting Induced Local Lesions IN Genome) is implemented in order to tackle lodging, the major yield limiting factor in tef.Key words: Orphan crops, underresearched crops, Eragrostis tef, TILLING, semi-dwarf.
Resumo:
Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.
Resumo:
On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.
Resumo:
Plant species richness of permanent grasslands has often been found to be significantly associated with productivity. Concentrations of nutrients in biomass can give further insight into these productivity- plant species richness relationships, e.g. by reflecting land use or soil characteristics. However, the consistency of such relationships across different regions has rarely been taken into account, which might significantly compromise our potential for generalization. We recorded plant species richness and measured above-ground biomass and concentrations of nutrients in biomass in 295 grasslands in three regions in Germany that differ in soil and climatic conditions. Structural equation modelling revealed that nutrient concentrations were mostly indirectly associated with plant species richness via biomass production. However, negative associations between the concentrations of different nutrients and biomass and plant species richness differed considerably among regions. While in two regions, more than 40% of the variation in plant species richness could be attributed to variation in biomass, K, P, and to some degree also N concentrations, in the third region only 15% of the variation could be explained in this way. Generally, highest plant species richness was recorded in grasslands where N and P were co-limiting plant growth, in contrast to N or K (co-) limitation. But again, this pattern was not recorded in the third region. While for two regions land-use intensity and especially the application of fertilizers are suggested to be the main drivers causing the observed negative associations with productivity, in the third region the little variance accounted for, low species richness and weak relationships implied that former intensive grassland management, ongoing mineralization of peat and fluctuating water levels in fen grasslands have overruled effects of current land-use intensity and productivity. Finally, we conclude that regional replication is of major importance for studies seeking general insights into productivity-diversity relationships.
Resumo:
In 2011 and 2012, outbreaks of clinical canine babesiosis were observed in 2 areas of the Swiss Midlands that had no history of this disease so far. In one area, cases of canine babesiosis occurred over 2 consecutive tick seasons. The outbreaks involved 29 dogs, 4 of which died. All dogs were infected with large Babesia sp. as diagnosed in Giemsa-stained blood smears and/or PCR. These were identified as B. canis (formerly known as B. canis canis) by subsequent partial sequencing of the 18S rRNA gene of Babesia sp. Interestingly, the sequence indicated either a genotype with heterogeneity in the ssrRNA gene copies or double infection with different B. canis isolates. None of the dogs had a recent travel history, but one had frequently travelled to Hungary and had suffered twice from clinical babesiosis 18 and 24 months prior to the outbreak in autumn 2011. Retrospective sequencing of a stored blood DNA sample of this dog revealed B. canis, with an identical sequence to the Babesia involved in the outbreaks. For the first time in Switzerland, the partial 18S rRNA gene of B. canis could be amplified from DNA isolated from 19 out of 23 adult Dermacentor reticulatus ticks flagged in the same area. The sequence was identical to that found in the dogs. Furthermore, one affected dog carried a female D. reticulatus tick harbouring B. canis DNA. Our findings illustrate that, under favourable biogeographic and climatic conditions, the life-cycle of B. canis can relatively rapidly establish itself in previously non-endemic areas. Canine babesiosis should therefore always be a differential diagnosis when dogs with typical clinical signs are presented, regardless of known endemic areas.
Resumo:
Aerial photography and satellite imagery reveal manifold geomorphological evidence of a dynamic evolution of past and present rivers in the Bolivian Amazon. Comparison of oxbow lake and meander scar dimensions along an inactive meander belt of the Río Mamoré (Llanos de Moxos, north-eastern Bolivia) and its modern counterpart suggests significant regional paleohydrological variability. We used these features as geomorphological and sedimentary archives to enhance our understanding of longer-term variations of the fluvial system. Late Pleistocene to Holocene hydrological changes of the Río Mamoré are inferred from: (i) the analysis of satellite imagery, (ii) discharge estimates from meander morphology, (iii) stratigraphic, and (iv) chronological information based on luminescence and radiocarbon dating. The combined data from three oxbows indicate that the now abandoned meander belt – the paleo-Mamoré – continued to be active at least until ∼5 ka, and likely even postdating 3 ka. An up to threefold increase in discharge is estimated for the modern Río Mamoré versus the paleo-Mamoré. The altered runoff regime may have triggered an avulsive shift towards the currently active Río Mamoré. The preceding increase in discharge in turn, was possibly related to a shift in climatic conditions, which changed markedly between the mid- and late Holocene in tropical South America. In addition, it may have been the indirect result of capturing the avulsive Río Grande system to the east of the Río Mamoré. Alternative explanations for the differences in dimensions of the paleo versus the modern Río Mamoré, i.e. contemporaneous activity of both rivers or alteration of site factors such as the channel/floodplain relationship, are considered to be unlikely.
Resumo:
Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.
Resumo:
Abstract. To date, terrestrial archives of long-term climatic change within the Arctic have widely been restricted to ice cores from Greenland and, more recently, sediments from Lake El’gygytgyn in northeast Arctic Russia. Sediments from this lake contain a paleoclimate record of glacialinterglacial cycles during the last three million years. Lowresolution studies at this lake have suggested that changes observed during Transition IV (the transition from marine isotope stage (MIS) 10 to MIS 9) are of greater amplitude than any observed since. In this study, geochemical parameters are used to infer past climatic conditions thus providing the first high-resolution analyses of Transition IV from a terrestrial Arctic setting. These results demonstrate that a significant shift in climate was subsequently followed by a rapid increase in biogenic silica (BSi) production. Following this sharp increase, bioproductivity remained high, but variable, for over a thousand years. This study reveals differences in the timing and magnitude of change within the ratio of silica to titanium (Si/Ti) and BSi records that would not be apparent in lower resolution studies. This has significant implications for the increasingly common use of Si/Ti data as an alternative to traditional BSi measurements.
Resumo:
A 318-metre-long sedimentary profile drilled by the International Continental Scientific Drilling Program (ICDP) at Site 5011-1 in Lake El’gygytgyn, Far East Russian Arctic, has been analysed for its sedimentologic response to global climate modes by chronostratigraphic methods. The 12 km wide lake is sited off-centre in an 18 km large crater that was created by the impact of a meteorite 3.58 Ma ago. Since then sediments have been continuously deposited. For establishing their chronology, major reversals of the earth’s magnetic field provided initial tie points for the age model, confirming that the impact occurred in the earliest geomagnetic Gauss chron. Various stratigraphic parameters, reflecting redox conditions at the lake floor and climatic conditions in the catchment were tuned synchronously to Northern Hemisphere insolation variations and the marine oxygen isotope stack, respectively. Thus, a robust age model comprising more than 600 tie points could be defined. It could be shown that deposition of sediments in Lake El’gygytgyn occurred in concert with global climatic cycles. The upper �160m of sediments represent the past 3.3 Ma, equivalent to sedimentation rates of 4 to 5 cm ka−1, whereas the lower 160m represent just the first 0.3 Ma after the impact, equivalent to sedimentation rates in the order of 45 cm ka−1. This study also provides orbitally tuned ages for a total of 8 tephras deposited in Lake El’gygytgyn.
Resumo:
Extensive glaciers repeatedly occupied the northern Alpine Foreland during the Pleistocene and left a strongly glacially overprinted low slope landscape. Only few islands appeared as nunataks standing above the surface of the large piedmont glacier lobes. These nunatak areas kept their original shape, manifested in steep catchments with mean slopes up to 33 . Even though not glaciated, these catchments where significantly affected by base-level changes occurring as a consequence of phases of glacier advances and retreats. Both domains, the glacially eroded and non-eroded, are therefore prone to different mechanisms and time-scales of fluvial and colluvial re-adjustment. In this study we investigate these effects by exploring the spatial distribution and magnitude of denudation in the Hörnli region of the eastern Swiss Alpine Foreland in the present Interglacial. The area represents both domains in a relatively small area with largely uniform tectonic, lithologic and climatic conditions. The differences in Holocene andscape evolution are investigated using topographic analyses and catchment-averaged denudation rates derived from 10Be concentrations in fluvial quartz sand. We find that in formerly non-glaciated, fluvially dominated catchments close hillslope-channel coupling prevails and that these catchments yield high average denudation rates of 350 mm/ka. Glacially overprinted catchments yielded catchment-wide denudation rates an order of magnitude lower. These low denudation rates are hypothesized to be the consequence of both (i) a dominance of slow hillslope processes and (ii) admixture of high concentration, pre-LGM glacial sediment. This suggests that a) a careful field investigation must accompany the denudation rate studies and b) that the concept of area-weighted cosmogenic nuclide denudation rates must be considered in light of the predominant catchment processes.
Resumo:
Fog is a potential source of water that could be exploited using the innovative technology of fog collection. Naturally, the potential of fog has proven its significance in cloud forests that are thriving from fog interception. Historically, the remains of artificial structures in different countries prove that fog has been collected as an alternative and/or supplementary water source. In the beginning of the 19th century, fog collection was investigated as a potential natural resource. After the mid-1980s, following success in Chile, fog-water collection commenced in a number of developing countries. Most of these countries are located in arid and semi-arid regions with topographic and climatic conditions that favour fog-water collection. This paper reviews the technology of fog collection with initial background information on natural fog collection and its historical development. It reviews the climatic and topographic features that dictate fog formation (mainly advection and orographic) and the innovative technology to collect it, focusing on the amount collected, the quality of fog water, and the impact of the technology on the livelihoods of beneficiary communities. By and large, the technology described is simple, cost-effective, and energy-free. However, fog-water collection has disadvantages in that it is seasonal, localised, and the technology needs continual maintenance. Based on the experience in several countries, the sustainability of the technology could be guaranteed if technical, economic, social, and management factors are addressed during its planning and implementation.
Resumo:
Over the last forty years, applying dendrogeomorphology to palaeoflood analysis has improved estimates of the frequency and magnitude of past floods worldwide. This paper reviews the main results obtained by applying dendrogeomorphology to flood research in several case studies in Central Spain. These dendrogeomorphological studies focused on the following topics: (1) anatomical analysis to understand the physiological response of trees to flood damage and improve sampling efficiency; (2) compiling robust flood chronologies in ungauged mountain streams, (3) determining flow depth and estimating flood discharge using two-dimensional hydraulic modelling, and comparing them with other palaeostage indicators; (4) calibrating hydraulic model parameters (i.e. Manning roughness); and (5) implementing stochastic-based, cost–benefit analysis to select optimal mitigation measures. The progress made in these areas is presented with suggestions for further research to improve the applicability of dendrogeochronology to palaeoflood studies. Further developments will include new methods for better identification of the causes of specific types of flood damage to trees (e.g. tilted trees) or stable isotope analysis of tree rings to identify the climatic conditions associated with periods of increasing flood magnitude or frequency.
Resumo:
In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.