977 resultados para Citrus peel chemicals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O Brasil é considerado o maior produtor de citros e o maior exportador de suco de laranja. Doenças de pós-colheita representam uma grande perda para a citricultura, sendo que para a exportação de frutos são rígidas as exigências com relação a isenção de resíduos químicos nos mesmos. Patógenos de importância em pós-colheita de citros incluem o Penicillium digitatum, agente causal do bolor-verde e o Colletotrichum gloeosporioides, agente causal da antracnose. Dada a importância econômica que representam estas doenças dos frutos cítricos, tanto em termos de comprometimento da qualidade e dificuldade de controle, a busca de alternativas adicionais que possam viabilizar a capacidade produtiva e garantir a obtenção de frutos com excelentes padrões de qualidade torna-se imprescindível. Portanto, estudou-se os efeitos dos extratos aquosos do flavedo de Citrus aurantifolia var. Tahiti, Lentinula edodes, Agaricus subrufescens (syn. Agaricus brasiliensis), albedo de Citrus sinensis var. Valência e do ácido jasmônico no controle póscolheita do bolor verde e da antracnose e na indução de resistência em frutos de laranjeira Valência (Citrus sinensis). Foi possível observar que o extrato aquoso do flavedo (C. aurantifolia) apresentou efeito inibitório sobre os patógenos, quando tratados em pós-colheita, em função da redução dos sintomas e esporulação. Porém, os extratos de albedo (C. sinensis), L. edodes, A. subrufescens e o ácido jasmônico não apresentaram efeitos sobre P. digitatum e C. gloeosporioides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C) 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Citrus leprosis, caused by Citrus leprosis virus C (CiLV-C), is currently considered the most important viral disease in the Brazilian citrus industry due to the high costs required for the chemical control of its vector, the mite Brevipalpus phoenicis. The pathogen induces a non-systemic infection and the disease is characterized by the appearance of localized lesions on citrus leaves, stems and fruits, premature fruit and leaf drop and dieback of stems. Attempts were made to promote in vitro expression of the putative cell-to-cell movement protein of CiLV-C in Escherichia coli and to produce a specific polyclonal antibody against this protein as a tool to investigate the virus-plant-vector relationship. The antibody reacted strongly with the homologous protein expressed in vitro by ELISA, but poorly with the native protein present in leaf lesion extracts from sweet orange caused by CiLV-C. Reactions from old lesions were more intense than those from young lesions. Western blot and in situ immunolocalization assays failed to detect the native protein. These results suggest low expression of the movement protein (MP) in host tissues. Moreover, it is possible that the conformation of the protein expressed in vitro and used to produce the antibody differs from that of the native MP, hindering a full recognition of the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o objetivo de avaliar a produção da silagem e o uso de aditivos no processo de ensilagem do resíduo úmido de cervejaria, foram realizados 5 tratamentos: controle (C: ensilagem de 100% de resíduo úmido de cervejaria); PC15 (15% de polpa cítrica); PC30 (30% de polpa cítrica); CS15 (15% de casca de soja); CS30 (30% de casca de soja) – com base na matéria fresca do resíduo de cervejaria. As silagens foram confeccionadas em baldes plásticos com 252mm de altura e 245mm de diâmetro (0,06174m³), e amostras foram coletadas para análises bromatológicas, pH, nitrogênio amoniacal, digestão in vitro de matéria seca, ácidos orgânicos e perfil microbiológico. Os resultados foram analisados pelo programa computacional Statistical Analysis System (Statistical..., 1985), sendo verificada a normalidade dos resíduos pelo Teste de Shapiro-Wilk (PROC UNIVARIATE), e as variâncias, pelo Teste de Hartley. Os efeitos dos níveis de adição foram separados por meio de contrastes polinomiais utilizando o nível de significância de 5%. Houve aumento do teor de matéria seca, carboidratos solúveis, ácido lático, digestão in vitro de matéria seca, da população de bactérias ácido láticas e redução do pH, ácido butírico, propiônico e nitrogênio amoniacal a partir das inclusões de polpa cítrica e casca de soja, sendo os melhores resultados encontrados para o tratamento com inclusão de 30% de polpa cítrica (P<0,05). A ensilagem do bagaço de malte por si só é uma alternativa para o produtor rural como suporte alimentar e confecção de silagem de qualidade que pode ser incrementada com o uso de aditivos a serem avaliados de acordo com a relação custo-benefício para eficiência da produção

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, it is clear that the target of creating a sustainable future for the next generations requires to re-think the industrial application of chemistry. It is also evident that more sustainable chemical processes may be economically convenient, in comparison with the conventional ones, because fewer by-products means lower costs for raw materials, for separation and for disposal treatments; but also it implies an increase of productivity and, as a consequence, smaller reactors can be used. In addition, an indirect gain could derive from the better public image of the company, marketing sustainable products or processes. In this context, oxidation reactions play a major role, being the tool for the production of huge quantities of chemical intermediates and specialties. Potentially, the impact of these productions on the environment could have been much worse than it is, if a continuous efforts hadn’t been spent to improve the technologies employed. Substantial technological innovations have driven the development of new catalytic systems, the improvement of reactions and process technologies, contributing to move the chemical industry in the direction of a more sustainable and ecological approach. The roadmap for the application of these concepts includes new synthetic strategies, alternative reactants, catalysts heterogenisation and innovative reactor configurations and process design. Actually, in order to implement all these ideas into real projects, the development of more efficient reactions is one primary target. Yield, selectivity and space-time yield are the right metrics for evaluating the reaction efficiency. In the case of catalytic selective oxidation, the control of selectivity has always been the principal issue, because the formation of total oxidation products (carbon oxides) is thermodynamically more favoured than the formation of the desired, partially oxidized compound. As a matter of fact, only in few oxidation reactions a total, or close to total, conversion is achieved, and usually the selectivity is limited by the formation of by-products or co-products, that often implies unfavourable process economics; moreover, sometimes the cost of the oxidant further penalizes the process. During my PhD work, I have investigated four reactions that are emblematic of the new approaches used in the chemical industry. In the Part A of my thesis, a new process aimed at a more sustainable production of menadione (vitamin K3) is described. The “greener” approach includes the use of hydrogen peroxide in place of chromate (from a stoichiometric oxidation to a catalytic oxidation), also avoiding the production of dangerous waste. Moreover, I have studied the possibility of using an heterogeneous catalytic system, able to efficiently activate hydrogen peroxide. Indeed, the overall process would be carried out in two different steps: the first is the methylation of 1-naphthol with methanol to yield 2-methyl-1-naphthol, the second one is the oxidation of the latter compound to menadione. The catalyst for this latter step, the reaction object of my investigation, consists of Nb2O5-SiO2 prepared with the sol-gel technique. The catalytic tests were first carried out under conditions that simulate the in-situ generation of hydrogen peroxide, that means using a low concentration of the oxidant. Then, experiments were carried out using higher hydrogen peroxide concentration. The study of the reaction mechanism was fundamental to get indications about the best operative conditions, and improve the selectivity to menadione. In the Part B, I explored the direct oxidation of benzene to phenol with hydrogen peroxide. The industrial process for phenol is the oxidation of cumene with oxygen, that also co-produces acetone. This can be considered a case of how economics could drive the sustainability issue; in fact, the new process allowing to obtain directly phenol, besides avoiding the co-production of acetone (a burden for phenol, because the market requirements for the two products are quite different), might be economically convenient with respect to the conventional process, if a high selectivity to phenol were obtained. Titanium silicalite-1 (TS-1) is the catalyst chosen for this reaction. Comparing the reactivity results obtained with some TS-1 samples having different chemical-physical properties, and analyzing in detail the effect of the more important reaction parameters, we could formulate some hypothesis concerning the reaction network and mechanism. Part C of my thesis deals with the hydroxylation of phenol to hydroquinone and catechol. This reaction is already industrially applied but, for economical reason, an improvement of the selectivity to the para di-hydroxilated compound and a decrease of the selectivity to the ortho isomer would be desirable. Also in this case, the catalyst used was the TS-1. The aim of my research was to find out a method to control the selectivity ratio between the two isomers, and finally to make the industrial process more flexible, in order to adapt the process performance in function of fluctuations of the market requirements. The reaction was carried out in both a batch stirred reactor and in a re-circulating fixed-bed reactor. In the first system, the effect of various reaction parameters on catalytic behaviour was investigated: type of solvent or co-solvent, and particle size. With the second reactor type, I investigated the possibility to use a continuous system, and the catalyst shaped in extrudates (instead of powder), in order to avoid the catalyst filtration step. Finally, part D deals with the study of a new process for the valorisation of glycerol, by means of transformation into valuable chemicals. This molecule is nowadays produced in big amount, being a co-product in biodiesel synthesis; therefore, it is considered a raw material from renewable resources (a bio-platform molecule). Initially, we tested the oxidation of glycerol in the liquid-phase, with hydrogen peroxide and TS-1. However, results achieved were not satisfactory. Then we investigated the gas-phase transformation of glycerol into acrylic acid, with the intermediate formation of acrolein; the latter can be obtained by dehydration of glycerol, and then can be oxidized into acrylic acid. Actually, the oxidation step from acrolein to acrylic acid is already optimized at an industrial level; therefore, we decided to investigate in depth the first step of the process. I studied the reactivity of heterogeneous acid catalysts based on sulphated zirconia. Tests were carried out both in aerobic and anaerobic conditions, in order to investigate the effect of oxygen on the catalyst deactivation rate (one main problem usually met in glycerol dehydration). Finally, I studied the reactivity of bifunctional systems, made of Keggin-type polyoxometalates, either alone or supported over sulphated zirconia, in this way combining the acid functionality (necessary for the dehydrative step) with the redox one (necessary for the oxidative step). In conclusion, during my PhD work I investigated reactions that apply the “green chemistry” rules and strategies; in particular, I studied new greener approaches for the synthesis of chemicals (Part A and Part B), the optimisation of reaction parameters to make the oxidation process more flexible (Part C), and the use of a bioplatform molecule for the synthesis of a chemical intermediate (Part D).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this dissertation the pyrolytic conversion of biomass into chemicals and fuels was investigated from the analytical point of view. The study was focused on the liquid (bio-oil) and solid (char) fractions obtainable from biomass pyrolysis. The drawbacks of Py-GC-MS described so far were partially solved by coupling different analytical configurations (Py-GC-MS, Py-GC-MIP-AED and off-line Py-SPE and Py-SPME-GC-MS with derivatization procedures). The application of different techniques allowed a satisfactory comparative analysis of pyrolysis products of different biomass and a high throughput screening on effect of 33 catalysts on biomass pyrolysis. As the results of the screening showed, the most interesting catalysts were those containing copper (able to reduce the high molecular weight fraction of bio-oil without large yield decrease) and H-ZSM-5 (able to entirely convert the bio-oil into “gasoline like” aromatic products). In order to establish the noxious compounds content of the liquid product, a clean-up step was included in the Py-SPE procedure. This allowed to investigate pollutants (PAHs) generation from pyrolysis and catalytic pyrolysis of biomass. In fact, bio-oil from non-catalytic pyrolysis of biomass showed a moderate PAHs content, while the use of H-ZSM-5 catalyst for bio-oil up-grading determined an astonishing high production of PAHs (if compared to what observed in alkanes cracking), indicating an important concern in the substitution fossil fuel with bio-oil derived from biomass. Moreover, the analytical procedures developed in this thesis were directly applied for the detailed study of the most useful process scheme and up-grading route to chemical intermediates (anhydrosugars), transportation fuels or commodity chemicals (aromatic hydrocarbons). In the applied study, poplar and microalgae biomass were investigated and overall GHGs balance of pyrolysis of agricultural residues in Ravenna province was performed. A special attention was put on the comparison of the effect of bio-char different use (fuel or as soil conditioner) on the soil health and GHGs emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to match the more stringent environmental regulations, heterogenization of traditional homogeneous processes is one of the main challenges of the modern chemical industry. Great results have been achieved in the fields of petrochemicals and base chemicals, whereas in fine chemical industry most of the synthetic procedures are based on multistep processes catalyzed by homogeneous catalysts mainly used in stoichiometric amounts. In the fine chemicals manufacture not so much efforts have been devoted to the investigation of suitable solid catalysts for the development of greener processes, then this sector represent a very attractive field of research. In this context, the present work deals with the extensive investigation of the possibility to heterogenize existing processes, in particular two different classes of reactions have been studied: alkylation of aromatic and heteroaromatic compounds and selective oxidation of aromatic alcohols. Traditional solid acid catalysts, such as zeolites, clays and alumina have been tested in the gas phase alkylation of 1,2-methylendioxybenzene, core building block of many drugs, pesticides and fragrances. The observed reactivity were clarified through a deep FTIR investigation complemented by ab initio calculation. The same catalysts were tested in the gas phase isopropylation of thiophene with the aim of clearly attribute the role of the reaction parameters in the reaction proceeding and verify the possibility to enhance the selectivity of one of the two possible isomers. Finally various Au/CeO2 catalysts were tested in the synthesis of benzaldehyde and piperonal, two aldehydes largely employed in the manufacture of fine chemical products, through liquid phase oxidation of the corresponding alcohols in very mild conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand of energy, fuels and chemicals is increasing due to the strong growth of some countries in the developing world and the development of the world economy. Unfortunately, the general picture derived sparked an exponential increase in crude oil prices with a consequent increase of the chemical, by-products and energy, depleting the global market. Nowadays biomass are the most promising alternative to fossil fuels for the production of chemicals and fuels. In this work, the development of three different catalytic processes for the valorization of biomass-derived has been investigated. 5-hydroxymethylfurfural oxidation was studied under mild reaction condition using gold and gold/copper based catalysts synthetized from pre-formed nanoparticles and supported onto TiO2 and CeO2. The analysis conducted on catalysts showed the formation of alloys gold/copper and a strong synergistic effect between the two metals. For this reason the bimetallic catalysts supported on titania showed a higher catalytic activity respect to the monometallic catalysts. The process for the production of 2,5-bishydroxymethyl furan (BHMF) was also optimized by means the 5-hydroxymethylfurfural hydrogenation using the Shvo complex. Complete conversion of HMF was achieved working at 90 °C and 10 bar of hydrogen. The complex was found to be re-usable for at least three catalytic cycles without suffering any type of deactivation. Finally, the hydrogenation of furfural and HMF was carried out, developing the process of hydrogen transfer by using MgO as a catalyst and methanol as a hydrogen donor. Quantitative yields to alcohols have been achieved in a few hours working in mild condition: 160 °C and at autogenous pressure. The only by-products formed were light products such as CO, CO2 and CH4 (products derived from methanol transformation), easily separable from the reaction solution depressurizing the reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brown rot fungi belong to a group of fungal pathogens that causes considerable damage to cultivated fruits trees, particularly stone fruits and apples in the temperate regions of the World and during the postharvest with an important economic impact. In particular in Italy, it is important to monitor the Monilinia population to control economic losses associated to the peach and nectarine market. This motivates the research steps presented in this dissertation on Monilinia Italian isolates. The Monilinia species collected from stone fruits have been identified using molecular analysis based on specific primers. The relevant role of M. fructicola was confirmed and, for the first time, it was found also on apple fruits. To avoid the development of resistant strains and implement valid treatment strategies, the understanding of the fruit natural resistance during different developmental stages and the assessment of the Monilinia sensitivity/resistance to fungicides are required. The relationship between the inhibition spots and the phenolic compounds in peach fruit peel was highlighted in this research. Three methods were used to assess isolate resistance/sensitivity, the amended medium, the Spiral Gradient Endpoint Method (SGD) and the Alamar Blue method. The PCR was used to find possible mutation points in the b-tubulin gene that is responsible for fungicide resistance. Interestingly, no mutation points were observed in resistant M. laxa isolates, suggesting that the resistance could be stimulated by environmental factors. This lead to the study of the effect of the temperature on the resistance and the preliminary results of in vitro tests showed that maximum inhibition was observed at 30°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study summarises all the accessible data on old German chemical weapons dumped in the Baltic Sea. Mr. Goncharov formulated a concept of ecological impact evaluation of chemical warfare agents (CWA) on the marine environment and structured a simulation model adapted to the specific character of the hydrological condition and hydrobiological subjects of the Bornholm Deep. The mathematical model he has created describes the spreading of contaminants by currents and turbulence in the near bottom boundary layer. Parameters of CWA discharge through corrosion of canisters were given for various kinds of bottom sediments with allowance for current velocity. He created a method for integral estimations and a computer simulation model and completed a forecast for CWA "Mustard", which showed that in normal hydrometeorological conditions there are local toxic plumes drifting along the bottom for a distance of up to several kilometres. With storm winds the toxic plumes from separate canisters interflow and lengthen and can reach fishery areas near Bornholm Island. When salt water from the North Sea flows in, the length of toxic zones can increase up to and over 100 kilometres and toxic water masses can spread into the northern Baltic. On this basis, Mr. Goncharov drew up recommendations to reduce dangers for human ecology and proposed the creation of a special system for the forecasting and remote sensing of the environmental conditions of CWA burial places.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In zebrafish, two isoforms of the aromatase gene exist, namely cyp19a1 and cyp19a2, expressed predominantly in the gonads and brain, respectively. In this study, we focus on characterizing the specificity of antibodies against the aromatase isoforms, and on (xeno)estrogen-induced changes of individual cyp19a2 mRNA concentrations in the brains of adult male zebrafish. Among three polyclonal antibodies studied, the one against CYP19A2 was found to be specific in Western blots and immunohistochemistry. Real-time RT-PCR analyses revealed strong interindividual variation of cyp19a2 levels in the brains of adult male zebrafish. After a three-week-exposure to (xeno)estrogens, mean values of cyp19a2 mRNA levels tended to increase, with significant induction at 200 ng 17beta-estradiol/L, but interindividual variation of cyp19a2 expression was maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, "glucocorticoid disruptors" can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) pre-receptor enzymes, by direct inhibition of 11beta-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.