950 resultados para Chronic pain -- Treatment -- Practicum
Resumo:
We tested the effect of chronic leptin treatment on fasting-induced torpor in leptin-deficient A-ZIP/F-1 and ob/ob mice. A-ZIP/F-1 mice have virtually no white adipose tissue and low leptin levels, whereas ob/ob mice have an abundance of fat but no leptin. These two models allowed us to examine the roles of adipose tissue and leptin in the regulation of entry into torpor. Torpor is a short-term hibernation-like state that allows conservation of metabolic fuels. We first characterized the A-ZIP/F-1 animals, which have a 10-fold reduction in total body triglyceride stores. Upon fasting, A-ZIP/F-1 mice develop a lower metabolic rate and decreased plasma glucose, insulin, and triglyceride levels, with no increase in free fatty acids or β-hydroxybutyrate. Unlike control mice, by 24 hr of fasting, they have nearly exhausted their triglycerides and are catabolizing protein. To conserve energy supplies during fasting, A-ZIP/F-1 (but not control) mice entered deep torpor, with a minimum core body temperature of 24°C, 2°C above ambient. In ob/ob mice, fasting-induced torpor was completely reversed by leptin treatment. In contrast, neither leptin nor thyroid hormone prevented torpor in A-ZIP/F-1 mice. These data suggest that there are at least two signals for entry into torpor in mice, a low leptin level and another signal that is independent of leptin and thyroid hormone levels. Studying rodent torpor provides insight into human torpor-like states such as near drowning in cold water and induced hypothermia for surgery.
Resumo:
The N-methyl-d-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.
Resumo:
Neurotrophins can directly modulate the function of diverse types of central nervous system synapses. Brain-derived neurotrophic factor (BDNF) might be released by nociceptors onto spinal neurons and mediate central sensitization associated with chronic pain. We have studied the role of BDNF and neurotrophin-4 (NT-4), both ligands of the trkB tyrosine kinase receptor, in synaptic transmission and reflex plasticity in the mouse spinal cord. We used an in vitro spinal cord preparation to measure monosynaptic and polysynaptic reflexes evoked by primary afferents in BDNF- and NT-4-deficient mice. In situ hybridization studies show that both these neurotrophins are synthesized by sensory neurons, and NT-4, but not BDNF, also is expressed by spinal neurons. BDNF null mutants display selective deficits in the ventral root potential (VRP) evoked by stimulating nociceptive primary afferents whereas the non-nociceptive portion of the VRP remained unaltered. In addition, activity-dependent plasticity of the VRP evoked by repetitive (1 Hz) stimulation of nociceptive primary afferents (termed wind-up) was substantially reduced in BDNF-deficient mice. This plasticity also was reduced in a reversible manner by the protein kinase inhibitor K252a. Although the trkB ligand NT-4 is normally present, reflex properties in NT-4 null mutant mice were normal. Pharmacological studies also indicated that spinal N-methyl-d-aspartate receptor function was unaltered in BDNF-deficient mice. Using immunocytochemistry for markers of nociceptive neurons we found no evidence that their number or connectivity was substantially altered in BDNF-deficient mice. Our data therefore are consistent with a direct role for presynaptic BDNF release from sensory neurons in the modulation of pain-related neurotransmission.
Resumo:
Programmed cell death (apoptosis) is an intrinsic part of organismal development and aging. Here we report that many nonsteroidal antiinflammatory drugs (NSAIDs) cause apoptosis when applied to v-src-transformed chicken embryo fibroblasts (CEFs). Cell death was characterized by morphological changes, the induction of tissue transglutaminase, and autodigestion of DNA. Dexamethasone, a repressor of cyclooxygenase (COX) 2, neither induced apoptosis nor altered the NSAID effect. Prostaglandin E2, the primary eicosanoid made by CEFs, also failed to inhibit apoptosis. Expression of the protooncogene bcl-2 is very low in CEFs and is not altered by NSAID treatment. In contrast, p20, a protein that may protect against apoptosis when fibroblasts enter G0 phase, was strongly repressed. The NSAID concentrations used here transiently inhibit COXs. Nevertheless, COX-1 and COX-2 mRNAs and COX-2 protein were induced. In some cell types, then, chronic NSAID treatment may lead to increased, rather than decreased, COX activity and, thus, exacerbate prostaglandin-mediated inflammatory effects. The COX-2 transcript is a partially spliced and nonfunctional form previously described. Thus, these findings suggest that COXs and their products play key roles in preventing apoptosis in CEFs and perhaps other cell types.
Resumo:
Introdução: Em 2008, o baixo nível de atividade física (< 30 min de atividade moderada/vigorosa por dia) foi responsável por 9 por cento da ocorrência de óbito no mundo. Além disso, está associado ao comprometimento de mobilidade em idosos com 80 anos e mais. No entanto, devido a dificuldades metodológicas, poucos são os estudos populacionais que realizaram a associação entre baixo nível de atividade física e comprometimento de mobilidade e risco para óbito, utilizando método objetivo para avaliação da atividade física, e ainda não se tem conhecimento de pesquisas que verificaram essa associação na América Latina. Objetivo: Identificar a prevalência do baixo nível de atividade física e sua associação com o comprometimento da mobilidade e risco para óbito em idosos com 65 anos e mais residentes no município de São Paulo em 2010. Métodos: Estudo exploratório e quantitativo de base populacional, que utilizou a base de dados do Estudo SABE de 2010 e ocorrência de óbito em 2014. Foram avaliados 599 indivíduos em 2010. O nível de atividade física foi analisado de duas maneiras: 1) baixo nível de atividade física (< 30 minutos de atividade moderada e/ou vigorosa por dia) e alto nível de atividade física (> 30 minutos de atividade moderada e/ou vigorosa por dia); e 2) a amostra foi distribuída em tercis, de acordo com as contagens por minuto, e agrupada em dois grupos, sendo os idosos do mais baixo tercil classificados com baixo nível de atividade física e os idosos dos dois outros tercis como intermediário/alto nível de atividade física. A regressão logística hierárquica foi utilizada para: 1) identificar as variáveis associadas ao baixo nível de atividade física; 2) analisar a associação do baixo nível de atividade física no comprometimento da mobilidade; e 3) estimar o risco para óbito em idosos com baixo nível de atividade física. A curva de sobrevida foi analisada com o método de Kaplan-Meier utilizando o teste de log-rank e o risco proporcional foi calculado pelo modelo de risco proporcional de Cox. Resultados: A prevalência de baixo nível de atividade física em idosos foi de 85,4 por cento e as variáveis associadas, após ajuste, foram sexo (feminino), grupo etário (>75 anos), multimorbidade (> 2 doenças crônicas), dor crônica (dor crônica nos últimos 3 meses) e índice de massa corporal (maior valor médio). O baixo nível de atividade física permaneceu significativamente associado ao comprometimento de mobilidade (OR= 3,49; IC95 por cento = 2,00 6,13) e ao risco para (RP= 2,79; IC95 por cento = 1,71 4,57), mesmo após ajuste das variáveis sóciodemográficas e clínicas. Conclusão: A prevalência do baixo nível de atividade física em pessoas idosas residentes no Município de São Paulo é superior aos encontrados na população brasileira, mas se aproxima de outras populações que utilizaram o mesmo método de avaliação da atividade física. O baixo nível de atividade física (< 30 min de atividades moderadas/vigorosas) foi associado com variáveis sociodemográficas (sexo feminino e grupo etário) e clínicas (multimorbidade, dor crônica e índice de massa corporal). O baixo nível de atividade física (menor tercil de contagens por minuto) foi associado ao comprometimento de mobilidade e risco para óbito em quatro anos. Dessa forma, o baixo nível de atividade física pode ser utilizado como uma forma adequada para identificar idosos com maiores chances de apresentar comprometimento da mobilidade e aumento do risco para óbito.
Resumo:
When ligaments within the wrist are damaged, the resulting loss in range of motion and grip strength can lead to reduced earning potential and restricted ability to perform important activities of daily living. Left untreated, ligament injuries ultimately lead to arthritis and chronic pain. Surgical repair can mitigate these issues but current procedures are often non-anatomic and unable to completely restore the wrist’s complex network of ligaments. An inability to quantitatively assess wrist function clinically, both before and after surgery, limits the ability to assess the response to clinical intervention. Previous work has shown that bones within the wrist move in a similar pattern across people, but these patterns remain challenging to predict and model. In an effort to quantify and further develop the understanding of normal carpal mechanics, we performed two studies using 3D in vivo carpal bone motion analysis techniques. For the first study, we measured wrist laxity and performed CT scans of the wrist to evaluate 3D carpal bone positions. We found that through mid-range radial-ulnar deviation range of motion the scaphoid and lunate primarily flexed and extended; however, there was a significant relationship between wrist laxity and row-column behaviour. We also found that there was a significant relationship between scaphoid flexion and active radial deviation range of motion. For the second study, an analysis was performed on a publicly available database. We evaluated scapholunate relative motion over a full range of wrist positions, and found that there was a significant amount of variation in the location and orientation of the rotation axis between the two bones. Together the findings from the two studies illustrate the complexity and subject specificity of normal carpal mechanics, and should provide insights that can guide the development of anatomical wrist ligament repair surgeries that restore normal function.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Background and objectives: Peripheral nerve blockade requires regional anesthesia skills that are taught in several formats and assessing technical proficiency has shifted from fulfillment of quotas to comprehensive procedural evaluation. Complete analgesia is the clinical endpoint validating successful nerve blockade but patient, technical and procedural factors influence this result. The purpose of this study was to determine if physician trainee or nurse anesthetist administered sciatic nerve blockade influence postoperative pain scores and opioid analgesic requirements and if patient factors, technique and repetition influence this outcome. Method: Sciatic nerve blockade by nerve stimulation and ultrasound based techniques were performed by senior anesthesiology resident trainees and nurse anesthetists under the supervision of regional anesthesia faculty. Preoperative patient characteristics including obesity, trauma, chronic pain, opioid use and preoperative pain scores were recorded and compared to the post-procedure pain scores and opioid analgesic requirements upon discharge from the post-anesthesia care unit and 24 hours following sciatic nerve blockade. Results: 93 patients received sciatic nerve blockade from 22 nurse anesthetists and 21 residents during 36 months. A significant relation between training background and improved pain scores was not demonstrated but transition from nerve stimulation to ultrasound guided techniques lowered immediate opioid usage in all groups. Patients with pre-existing chronic opioid use had higher postoperative pain scores and opioid dosages following nerve block. Conclusion: Patient analgesia should be an integral measure of proficiency in regional anesthesia techniques and evaluating this procedure outcome for all practitioners throughout their training and beyond graduation will longitudinally assess technical expertise.
Resumo:
Introduction: Assessment of expertise in regional anesthesia techniques is traditionally based upon quota fulfillment of procedures during training. Validation of practitioner proficiency in performing procedures in surgical specialties has moved from simple measurement of technical skills to evaluation of global patient outcomes. Complete absence of pain as a result of nerve blockade is the most important clinical endpoint but patient, technical and procedural factors influence results. The purpose of this study was to measure the postoperative pain scores and associated analgesic medication requirements for patients administered sciatic nerve blockade by nurse anesthetists and determine patient or procedural factors that influenced this outcome. Methods: Either nerve stimulator or ultrasound guided sciatic nerve blockade was administered by nurse anesthetists under the supervision of regional anesthesia faculty. Patient demographic data that was collected included gender, body mass index, surgical procedure, and pre-existing chronic pain with associated opioid use. Patient self-reported pain scores and opioid analgesic dosages in the preoperative, intraoperative, immediate postoperative and 24 hour post procedure intervals were recorded. Results: 22 nurse anesthetists administered sciatic nerve blockade to 48 patients during a 36 month interval. Transition from a nerve stimulator to ultrasound guided sciatic nerve block technique resulted in lower mean pain scores. Patients reporting chronic opioid use were observed to have elevated perioperative opioid analgesic requirements and pain scores compared to opioid naïve patients. Conclusion: Effective analgesia is a prime measure for assessing expertise in regional anesthesia and continuous evaluation of this outcome in everyday practice is proposed.
Resumo:
The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.
Cognitive disorders and neurogenesis deficits in Huntington's disease mice are rescued by fluoxetine
Resumo:
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat encoding an extended polyglutamine tract in the huntingtin protein. Affected individuals display progressive motor, cognitive and psychiatric symptoms (including depression), leading to terminal decline. Given that transgenic HD mice have decreased hippocampal cell proliferation and that a deficit in neurogenesis has been postulated as an underlying cause of depression, we hypothesized that decreased hippocampal neurogenesis contributes to depressive symptoms and cognitive decline in HD. Fluoxetine, a serotonin-reuptake inhibitor commonly prescribed for the treatment of depression, is known to increase neurogenesis in the dentate gyrus of wild-type mouse hippocampus. Here we show that hippocampal-dependent cognitive and depressive-like behavioural symptoms occur in HD mice, and that the administration of fluoxetine produces a marked improvement in these deficits. Furthermore, fluoxetine was found to rescue deficits of neurogenesis and volume loss in the dentate gyrus of HD mice.
Resumo:
Objective: To understand the basis of the effectiveness of carvedilol in heart failure by determining its specific properties at human heart and beta(2)-adrenoceptors. Methods: The positive inotropic effects of noradrenaline (in the presence of the beta(2)-selective antagonist ICI118551) and adrenaline (in the presence of the beta(1)-selective antagonist CGP20712), mediated through beta(1)- and beta(2)-adrenoceptors, respectively, were investigated in atrial and ventricular trabeculae. The patch-clamp technique was used to investigate effects of noradrenaline and adrenaline on L-type Ca2+ current in human atrial myocytes. Results: Carvedilol was a 13-fold more potent competitive antagonist of the effects of adrenaline at 1 2-adrenoceptors (-logK(B) = 10.13 +/- 0.08) than of noradrenaline at beta(1)-adrenoceptors (-logK(B) = 9.02 +/- 0.07) in human right atrium. Chronic carvedilol treatment of patients with non-terminal heart failure reduced the inotropic sensitivity of atrial trabeculae to noradrenaline and adrenaline 5.6-fold and 91.2-fold, respectively, compared to beta(1)-blocker-treated patients, consistent with persistent preferential blockade of beta(2)-adrenoceptors. In terminal heart failure carvedilol treatment reduced 1.8-fold and 25.1-fold the sensitivity of right ventricular trabeculae to noradrenaline and adrenaline, respectively, but metoprolol treatment did not reduce the sensitivity to the catecholamines. Increases of current (I-Ca,I-L) produced by noradrenaline and adrenaline were not different in atrial myocytes obtained from non-terminal heart failure patients treated with metoprolol or carvedilol, consistent with dissociation of both beta-blockers from the receptors. Conclusions: Carvedilol blocks human cardiac beta(2)-adrenoceptors more than beta(1)-adrenoceptors, thereby conceivably contributing to the beneficial effects in heart failure. The persistent blockade of beta-adrenoceptors is attributed to accumulation of carvedilol in cardiac tissue. (c) 2005 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
Resumo:
Conotoxins, disulfide-rich peptides from the venom of cone snails, have created much excitement over recent years due to their potency and specificity for ion channels and their therapeutic potential. One recently identified conotoxin, MrIA, a 13-residue member of the chi-conotoxin family, inhibits the human norepinephrine transporter (NET) and has potential applications in the treatment of pain. In the current study, we show that the, beta-hairpin structure of native MrIA is retained in a synthetic cyclic version, as is biological activity at the NET. Furthermore, the cyclic version has increased resistance to trypsin digestion relative to the native peptide, an intriguing result because the cleavage site for the trypsin is not close to the cyclization site. The use of peptides as drugs is generally hampered by susceptibility to proteolysis, and so, the increase in enzymatic stability against trypsin observed in the current study may be useful in improving the therapeutic potential of MrIA. Furthermore, the structure reported here for cyclic MrIA represents a new topology among a growing number of circular disulfide-rich peptides.
Resumo:
The purpose of this presentation is to pay tribute to the life's work of Professor Vladimir Janda, a key figure in the 20th Century rehabilitation movement. An accomplished neurologist, he founded the rehabilitation department at Charles University Hospital in Prague, Czechoslovakia. He was one of the seminal members of the Prague school of manual medicine and rehabilitation that expanded its influence throughout Central and Eastern Europe. His observations regarding muscle imbalances, faulty posture and gait, and their association with chronic pain syndromes, etiologically, diagnostically, and therapeutically, influenced the rehabilitation world. The authors comprise a multinational, multiprofessional group representative of rehabilitation specialists around the world who would like to pay tribute and give a final word of thanks to this innovative educator, clinician, and author.