999 resultados para Chalmers, J. W.
Resumo:
Time-resolved resonance Raman spectroscopy of the lowest energy excited state of the 4,4'-bipyridyl ligand-bridged complex, [(CO)(5)W(L)W(CO5] (1), and Raman spectroscopy of electrochemically reduced 1, both give bands characteristic of the the L(.-) species. This confirms that the ligand L is negatively charged in the lowest energy exicited state which is therefore metal-ligand charge transfer (MLCT) in character. Raman spectra of the radical anion of 1 excited in the far red (800 nm) exhibited a band near 2050 cm(-1) due to a vco symmetric CO stretching mode, compared to the corresponding band at 2070 cm(-1) in the spectrum of the parent, uncharged complex. The lower vco in the reduced complex supports the recent finding by time-resolved IR spectroscopy of a similar frequency decrease for nu(CO) in the longest lived (MLCT) excited state of 1 which was attributed to electron/hole localisation in this state on the IR time scale.
Resumo:
A novel regime is proposed where, by employing linearly polarized laser pulses at intensities 10(21) W cm(-2) (2 orders of magnitude lower than discussed in previous work [T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)]), ions are dominantly accelerated from ultrathin foils by the radiation pressure and have monoenergetic spectra. In this regime, ions accelerated from the hole-boring process quickly catch up with the ions accelerated by target normal sheath acceleration, and they then join in a single bunch, undergoing a hybrid light-sail-target normal sheath acceleration. Under an appropriate coupling condition between foil thickness, laser intensity, and pulse duration, laser radiation pressure can be dominant in this hybrid acceleration. Two-dimensional particle-in-cell simulations show that 1.26 GeV quasimonoenergetic C6+ beams are obtained by linearly polarized laser pulses at intensities of 10(21) W cm(-2).
Resumo:
K-alpha x-ray emission, extreme ultraviolet emission, and plasma imaging techniques have been used to diagnose energy transport patterns in copper foils ranging in thickness from 5 to 75 mu m for intensities up to 5x10(20) Wcm(-20). The K-alpha emission and shadowgrams both indicate a larger divergence angle than that reported in the literature at lower intensities [R. Stephens , Phys. Rev. E 69, 066414 (2004)]. Foils 5 mu m thick show triple-humped plasma expansion patterns at the back and front surfaces. Hybrid code modeling shows that this can be attributed to an increase in the mean energy of the fast electrons emitted at large radii, which only have sufficient energy to form a plasma in such thin targets.