992 resultados para Central Tibetan Plateau
Resumo:
There is a great similarity between pollen types which occur in the early Holocene NE Tibetan pollen spectra and those which are commonly considered to be typical for the Würm Late Glacial period in Central Europe and for the Würm Pleniglacial period in Southern Europe. Evidently, this similarity is due to a remarkable general conformity of plant taxa growing in cold-arid regions of the northern hemisphere. The improvement of the climate and the retreat of the glaciers that commenced at the end of the Würm period had already terminated definitely before 9500 BP. In addition, the climatic situation as well as the vegetation belts must have remained rather constant during the following 3000 yr, i.e. through most parts of the climatic optimum of the Holocene.
Resumo:
Complete records of organic-carbon-rich Cretaceous strata were continuouslycored on the flanks of the Mid-Pacific Mountains and southern Hess Rise in the central North Pacific Ocean during DSDP Leg 62. Organic-carbon-rich laminated silicified limestones were deposited in the western Mid-Pacific Mountains during the early Aptian, a time when that region was south of the equator and considerably shallower than at present. Organic-carbon-rich, laminated limestone on southern Hess Rise overlies volcanic basement and includes 136 m of stratigraphic section of late Albian to early Cenomanian age. This limestone unit was deposited rapidly as Hess Rise was passing under the equatorial high-productivity zone and was subsiding from shallow to intermediate depths. The association of volcanogenic components with organic-carbon-rich strata on Hess Rise in the Mid-Pacific Mountains is striking and suggests that there was a coincidence of mid-plate volcanic activity and the production and accumulation of organic matter at intermediate water depths in the tropical Pacific Ocean during the middle Cretaceous. Pyrolysis assays and analyses of extractable hydrocarbons indicate that the organic matter in the limestone on Hess Rise is composed mainly of lipid-rich kerogen derived from aquatic marine organisms and bacteria. Limestones from the Mid-Pacific Mountains generally contain low ratios of pyrolytic hydrocarbons to organic carbon and low hydrogen indices, suggesting that the organic matter may contain a significant proportion of land-derived material, possibly derived from numerous volcanic islands that must have existed before the area subsided. The organic carbon in all samples analyzed is isotopically light (d13C -24 to -29 per mil) relative to most modern rine organic carbon, and the lightest carbon is also the most lipid-rich. There is a positive linear correlation between sulfur and organic carbon in samples from Hess Rise and from the Mid-Pacific Mountains. The slopes and intercepts of C-S regression lines however, are different for each site and all are different from regression lines for samples from modern anoxic marine sediments and from Black Sea cores. The organic-carbon-rich limestones on Hess Rise, the Mid-Pacific Mountains, and other plateaus and seamounts in the Pacific Ocean are not synchronous but do occur within the same general middle Cretaceous time period as organic-carbon-rich lithofacies elsewhere in the world ocean, particularly in the Atlantic Ocean. Strata of equivalent age in the deep basins of the Pacific Ocean are not rich in organic carbon, and were deposited in oxygenated environments. This observation, together with the evidence that the plateau sites were considerably shallower and closse to the equator during the middle Creataceous suggests that local tectonic and hydrographic conditions may have resulted in high surface-water productivity and the preservation of organic matter in an oxygen-deficient environment where an expanded mid-water oxygen minimum developed and impinged on elevated platforms and seamounts.
Resumo:
We used well logs, in some cases combined with shipboard physical properties measurements to make more complete profiles and to correlate between sites on the Ontong Java Plateau. By comparing sediment bulk density, velocity, and resistivity logs from adjacent holes at the same site, we showed that even subtle features of the well logs are reproducible and are caused by variations in sedimentation. With only minor amounts of biostratigraphic information, we could readily correlate these sedimentary features across the entire top of the Ontong Java Plateau, demonstrating that for most of the Neogene the top of the plateau is a single sedimentary province. We found it more difficult, but still possible, to correlate in detail sites from the top of the plateau to those drilled on the flanks. The pattern of sedimentation rate variation down the flank of the plateau cannot be interpreted as simply controlled by dissolution. Site 805, in particular, oscillates between accumulating sediment at roughly the same rate as cores on top of the Ontong Java Plateau, and accumulating sediment as slowly as Site 803, 200 m deeper in the water column. These oscillations do not match earlier reconstructions of central Pacific carbonate compensation depth variations.
Resumo:
We present paleomagnetic data from basaltic pillow and lava flows drilled at four Ocean Drilling Program (ODP) Leg 192 sites through the Early Cretaceous (~120 Ma) Ontong Java Plateau (OJP). Altogether 270 samples (out of 331) yielded well-defined characteristic remanent magnetization components all of which have negative inclinations, i.e. normal polarity. Dividing data into inclination groups we obtain 5, 7, 14 and 15 independent inclination estimates for the four sites. Statistical analysis suggests that paleosecular variation has been sufficiently sampled and site-mean inclinations therefore represent time-averaged fields. Of particular importance is the finding that all four site-mean inclinations are statistically indistinguishable, strongly supporting indirect seismic observation from the flat-lying sediments blanketing the OJP that the studied basalts have suffered little or no tectonic disturbance since their emplacement. Moreover, the corresponding paleomagnetic paleolatitudes agree excellently with paleomagnetic data from a previous ODP site (Site 807) drilled into the northern portion of the OJP. Two important conclusions can be drawn based on the presented dataset: (i) the Leg 192 combined mean inclination (Inc.=-41.4°, N=41, kappa= 66.0, alpha95 =2.6°) is inconsistent with the Early Cretaceous part of the Pacific apparent polar wander path, indicating that previous paleomagnetic poles derived mainly from seamount magnetic anomaly modeling must be used with care; (ii) the Leg 192 paleomagnetic paleolatitude for the central OJP is ~20° north of the paleogeographic location calculated from Pacific hotspot tracks assuming the hotspots have remained fixed. The difference between paleomagnetic and hotspot calculated paleolatitudes cannot be explained by true polar wander estimates derived from other lithospheric plates and our results are therefore consistent with and extend recent paleomagnetic studies of younger hotspot features in the northern Pacific Ocean that suggest Late Cretaceous to Eocene motion of Pacific hotspots.
Resumo:
Epiclastic volcanogenic rocks recovered from the Kerguelen Plateau during Ocean Drilling Program Legs 119 and 120 comprise (pre-)Cenomanian(?) claystones (52 m thick, Site 750); a Turonian(?) basaltic pebble conglomerate (1.2 m thick, Site 748; Danian mass flows (45 m thick, Site 747); and volcanogenic debris flows of Quaternary age at Site 736 (clastic apron of Kerguelen Island). Pyroclastic rocks comprise numerous Oligocene to Quaternary marine ash layers. The epiclastic sediments with transitional mid-ocean-ridge basalt (T-MORB) origin indicate weathering (Site 750) and erosion (Site 747) of Early Cretaceous T-MORB from a then-emergent Kerguelen Plateau, connected to Late Cretaceous tectonic events. The basal pebble conglomerate of Site 748 has an oceanic-island basalt (OIB) composition and denotes erosion and reworking of seamount to oceanic-island-type volcanic sources. The vitric- to crystal-rich marine ash layers are a few centimeters thick, have rather uniform grain sizes around 60 ± 40 µm, and are a result of Plinian eruptions. Crystal-poor silicic vitric ashes may also represent co-ignimbrite ashes. The ash layers have bimodal, basaltic, and silicic compositions with a few intermediate shards. The basaltic ashes are evolved high-titanium T-MORB; a few grains in a silicic pumice lapilli layer have a low-titanium basaltic composition. The silicic ashes comprise trachytic and rhyolitic glass shards belonging to a high-K series, except for a few low-K glasses admixed to a basaltic ash layer. Feldspar and clinopyroxene compositions fit the glass chemistry: high-Ti tholeiite-basaltic glasses have Plagioclase of An40-80 and pigeonite to augite clinopyroxene compositions. Silicic ashes have K-rich anorthoclase and minor Plagioclase around An20 and ferriaugitic to hedenbergitic clinopyroxene compositions. The line of magmatic evolution for the glass shards is not compatible with simple two-end member (high-Ti T-MORB and high-K rhyolite) mixing, but favors successive Ca-Mg-Fe pyroxene, Ti magnetite, and apatite fractionation, and K-rich alkali feldspar fractionation in trachytic magmas to yield rhyolitic compositions. Plagioclase fractionation occurs throughout. This qualitative model is in basic accordance with the observed mineral assemblage. However, as the time span for explosive volcanism spans >30 m.y., this basic model cannot comply with fractional crystallization in a single magma reservoir. The ash layers resulted from highly explosive eruptions on Kerguelen and, with less probability, Heard islands since the Oligocene. The explosive history starts with widespread Oligocene basaltic ash layers that indicate sea-level or subaerial volcanism on the Northern Kerguelen Plateau. After a hiatus of 24 m.y.(?), explosive magmatic activity was vigorously renewed in the late Miocene with more silicic eruptions. A peak in explosive activity is inferred for the Pliocene-Pleistocene. The composition and evolution of Kerguelen Plateau ash layers resemble those from other hotspot-induced, oceanic-island realms such as Iceland and Jan Mayen in the North Atlantic, and the Canary Islands archipelago in the Central Atlantic.
Resumo:
Based on sedimentological, mineralogical, geochemical, and micropaleontological data on comprehensively investigated Core ASV16-1372, Late Pleistocene - Holocene sedimentation history is reconstructed for the Voring marginal plateau (continental margin of the Norwegian Sea). An age model constructed is based on correlation with several adjacent cores, for which AMS radiocarbon datings are available. Lithostratigraphic correlation made it possible to compare stratigraphic division of Core ASV16-1372 with other cores sampled on the Voring Plateau and the shelf and continental slope off Central Norway. It is concluded that compositional and structural features of bottom sediments are correlated with paleoclimatic and paleoceanographic changes, variations in provenances, as well as agents and pathways of sedimentary material transport.
Resumo:
An essentially complete Paleogene record was recovered on the Central and Southern Kerguelen plateaus (55°-59°S) in a calcareous biofacies. Recovery deteriorated in the middle Eocene and down to the upper Paleocene because of the presence of interbedded cherts and chalks. The stratigraphic distribution of about 70 taxa of planktonic foraminifers recovered at Sites 747-749 is reported in this paper. Faunas exhibited fairly high diversity (approximately 20-25 species) in the early Eocene, followed by a gradual reduction in diversity in the middle Eocene. A brief incursion of tropical keeled morozovellids occurred near the Paleocene/Eocene boundary, similar to that recorded on the Maud Rise (ODP Sites 689 and 690). The high-latitude Paleogene zonal scheme developed for ODP Leg 113 sites has been adopted (with minor modifications) for the lower Eocene-Oligocene part of the Kerguelen Plateau record. A representative Oligocene (polarity chronozones 7-13) and late Eocene-late middle Eocene (questionably polarity chronozones 16-18) magnetostratigraphic record has allowed the calibration of several biostratigraphic datum levels to the standard Global Polarity Time Scale (GPTS) and established their essential synchrony between low and high latitudes.
Resumo:
During Leg 194, a series of eight sites was drilled through Oligocene-Holocene mixed carbonate and siliciclastic sediments on the Marion Plateau, northeast Australia. The major objective was to constrain the magnitude and timing of sea level changes in the Miocene. Site 1193, located on the Marion Plateau in 348 m of water ~80 km from the south central Great Barrier Reef margin, is probably the most important site for constraining the major middle to late Miocene sea level drop and reconstructing the evolution history of the Marion Plateau during the Miocene (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). However, there is no biostratigraphic or other chronological data for the critical interval between 36 and 211 meters below seafloor (mbsf) (virtually the entire late and middle Miocene) due to poor core recovery and a virtual absence of planktonic microfossils in the core catcher samples examined aboard the ship (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). The main purpose of this report is to refine the shipboard nannofossil biostratigraphy through examination of new samples and more detailed examination of those samples reported on board the ship. This results in a refinement for most of the nannofossil datums and provides some useful age information to fill the critical data gap for the middle Miocene. Previous Neogene nannofossil biostratigraphic studies of the Marion Plateau and Queensland Plateau include Gartner et al. (1993, doi:10.2973/odp.proc.sr.133.213.1993) and Wei and Gartner (1993, doi:10.2973/odp.proc.sr.133.216.1993).
Resumo:
The Ontong Java Plateau in the western Pacific is anomalous compared to other oceanic large igneous provinces in that it appears to have never formed a large subaerial plateau. Paleoeruption depths (at 122 Ma) estimated from dissolved H2O and CO2 in submarine basaltic glass pillow rims vary from ~1100 m below sea level (mbsl) on the central part of the plateau to 2200-3000 mbsl on the northeastern edge. Our results suggest maximum initial uplift for the plateau of 2500-3600 m above the surrounding seafloor and 1500+/-400 m of postemplacement subsidence since 122 Ma. Our estimates of uplift and subsidence for the plateau are significantly less than predictions from thermal models of oceanic lithosphere, and thus our results are inconsistent with formation of the plateau by a high-temperature mantle plume. Two controversial possibilities to explain the anomalous uplift and subsidence are that the plateau (1) formed as a result of a giant bolide impact, or (2) formed from a mantle plume but has a lower crust of dense garnet granulite and/or eclogite; neither of these possibilities is fully consistent with all available geological, geophysical, and geochemical data. The origin of the largest magmatic event on Earth in the past 200 m.y. thus remains an enigma.
Resumo:
Long-term vegetation succession and permafrost dynamics in subarctic peat plateaus of west-central Canada have been studied through detailed plant macrofossil analysis and extensive AMS radiocarbon dating of two peat profiles. Peatland inception at these sites occurred around 5800-5100 yr BP (6600-5900 cal. BP) as a result of paludification of upland forests. At the northern peat plateau site, located in the continuous permafrost zone, palaeobotanical evidence suggests that permafrost was already present under the forested upland prior to peatland development. Paludification was initiated by permafrost collapse, but re-aggradation of permafrost occurred soon after peatland inception. At the southern site, located in the discontinuous permafrost zone, the aggradation of permafrost occurred soon after peatland inception. In the peat plateaus, permafrost conditions have remained very stable until present. Sphagnum fuscum-dominated stages have alternated with more xerophytic communities characterized by ericaceous shrubs. Local peat fires have occurred, but most of these did not cause degradation of the permafrost. Starting from 2800-1100 yr BP (2900-1000 cal. BP) consistently dry surface conditions have prevailed, possibly related to continued frost heave or nearby polygon crack formation.
Resumo:
With the exception of a brief (2 m.y.) late Miocene-early Pliocene hiatus, an essentially complete Neogene record was recovered on the Kerguelen Plateau in a calcareous biofacies. The stratigraphic distribution of about 30 taxa of Neogene planktonic foraminifers recovered at Sites 747, 748,and 751 (Central and Southern Kerguelen plateaus; approximately 54°-58°S) is recorded. Faunas are characterized by low diversity and high dominance and exhibit a gradual decline in species numbers (reflecting a concomitant increase in biosiliceous forms, particularly diatoms) from about 10 in the early Miocene to 5-8 in the middle Miocene, 3-4 in the late Miocene, to essentially a lone (Neogloboquadrina pachyderma) form in the Pliocene-Pleistocene. A provisional sevenfold biostratigraphic zonation has been formulated that, together with the recovery of a representative Neogene magnetostratigraphic record, may ultimately lead to a correlation with low-latitude magnetobiostratigraphies. The initial appearance of Neogloboquadrina pachyderma is associated with magnetic polarity Chron (MPC) 4 (~7 Ma) and MPC 4A (>8 Ma) at Sites 747 and 751, respectively.