927 resultados para Cationic antimicrobial peptides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimicrobial resistance (AMR) associated with the food chain is currently a subject of major interest to many food chain stakeholders. In response safefood commissioned this report to update our knowledge of this area and to raise awareness of the issue. Its primary focus is on the food chain where it impacts consumer health. This review will inform and underpin any future action to be taken by safefood with regard to AMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteroides fragilis has been isolated from several human and non-human monomicrobial and mixed infections. In this study, some virulence markers and the antimicrobial susceptibility of bacteria of the B. fragilis group isolated from children's stools were evaluated. All the 64 isolates showed the following characteristics: capsulated, beta-hemolytic, hydrophilic, and serum-resistant. Only, 24 (37.5%) strains were resistant at 60ºC, for 30 min, and among them, 12 (18.75%) were resistant at 60ºC, for 60 min. Also, none strain was resistant at 100ºC. Four strains were able to hemagglutinate erythrocytes and D-mannose, D-galactose, D-arabinose, and D-xylose inhibited hemagglutination in 2 B. fragilis strains (p76a, p76b). The hemagglutination in the strain B. uniformis p3-2 was inhibited by D-xylose and D-galactose. The bft gene detection and the enterotoxin production were observed only in 13 EF-enterotoxigenic species. Fragilysin activity was confirmed on HT-29 cells. The antimicrobial determination confirmed that both imipenem and metronidazole were efficient against B. fragilis species; all the strains were resistant to lead and nickel. Plasmids of 2.9, 4.4, 4.8, and 8.9 kb were observed in 6 tested strains. These results show the values of the species identification from clinical infections, as well as of the periodic evaluation of the resistance patterns of the B. fragilis group at Brazilian medical institutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacteria of the Bacteroides fragilis group are considered important clinical pathogens and they are the most common anaerobes isolated from human endogenous infections. In this study, the susceptibility patterns to antibiotics and metals of 114 species of the B. fragilis group isolated from children with and without diarrhea were determined. Susceptibility was assayed by using an agar dilution method with Wilkins-Chalgren agar. All B. fragilis strains were resistant to lead and nickel, but susceptible to metronidazole and imipenem. beta-lactamase production was detected by using biological and nitrocefin methods, respectively, in 50% and 90.6% of the isolates of children with diarrhea and in 60% and 90% of the isolates of children without diarrhea. Our results show an increase of antibiotics and metals resistance in this microbial group, and a periodic evaluation of the antimicrobial susceptibility is needed. In Brazil, the contamination for antibiotics or metal ions is often observed, and it is suggested an increase the antimicrobial resistance surveillance of this microbial group, mainly those isolated from children's diarrhea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimicrobial activity of three different extracts (hexanic, ethyl acetate, methanol) obtained from Brazilian Drosera species (D. communis, D. montana var. montana, D. brevifolia, D. villosa var. graomogolensis, D. villosa var. villosa, Drosera sp. 1, and Drosera sp. 2 ) were tested against Staphylococcus aureus (ATCC 25923), Enterococcus faecium (ATCC23212), Pseudomonas aeruginosa (ATCC27853), Escherichia coli (ATCC11229), Salmonella choleraesuis (ATCC10708), Klebsiella pneumoniae (ATCC13883), and Candida albicans (a human isolate). Better antimicrobial activity was observed with D. communis and D. montana var. montana ethyl acetate extracts. Phytochemical analyses from D. communis, D. montana var. montana and D. brevifolia yielded 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin); long chain aliphatic hydrocarbons were isolated from D. communis and from D. villosa var. villosa, a mixture of long chain aliphatic alcohols and carboxylic acids, was isolated from D. communis and 3b-O-acetylaleuritolic acid from D. villosa var. villosa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the results about antimicrobial resistance of Enterococcus spp. isolated from intestinal tract of patients from a university hospital in Brazil. The identification of strains at species level was performed by conventional biochemical tests, API 20 Strep (bioMérieux), and polymerase chain reaction assay. The specie distribution was E. faecium (34%), followed by E. faecalis (33%), E. gallinarum (23.7%), E. casseliflavus (5.2%), E. avium (1%), and E. hirae (1%). Intrinsic resistance to vancomycin characterized by presence of vanC genes was found in E. gallinarum and E. casseliflavus. The high prevalence of VanC phenotype enterococci is very important because these species have been reported as causing a wide variety of infections. Vancomycin-resistant E. faecium or E. faecalis were not found and no one isolate of these species was a beta-lactamase producer. Thirteen clinical isolates of enterococci (13.4%) showed multiresistance patterns, which were defined by resistance to three classes of antibiotics plus resistance to at least one aminoglycoside (gentamicin and/or streptomycin). The resistance to several antimicrobials shown by enterococcal strains obtained in this study is of concern because of the decrease in the therapeutic options for treatment of infections caused by enterococci.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propolis is a natural resinous substance collected by bees from tree exudates and secretions. Its antimicrobial activity has been investigated and inhibitory action on Staphylococcus aureus growth was evaluated. The in vitro synergism between ethanolic extract of propolis (EEP) and antimicrobial drugs by two susceptibility tests (Kirby and Bauer and E-Test) on 25 S. aureus strains was evaluated. Petri dishes with sub-inhibitory concentrations of EEP were incubated with 13 drugs using Kirby and Bauer method and synergism between EEP and five drugs [choramphenicol (CLO), gentamicin (GEN), netilmicin (NET), tetracycline (TET), and vancomycin (VAN)] was observed. Nine drugs were assayed by the E-test method and five of them exhibited a synergism [CLO, GEN, NET, TET, and clindamycin (CLI)]. The results demonstrated the synergism between EEP and antimicrobial drugs, especially those agents that interfere on bacterial protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimicrobial susceptibility of 176 unusual non-fermentative gram-negative bacilli (NF-GNB) collected from Latin America region through the SENTRY Program between 1997 and 2002 was evaluated by broth microdilution according to the National Committee for Clinical Laboratory Standards (NCCLS) recommendations. Nearly 74% of the NF-BGN belonged to the following genera/species: Burkholderia spp. (83), Achromobacter spp. (25), Ralstonia pickettii (16), Alcaligenes spp. (12), and Cryseobacterium spp. (12). Generally, trimethoprim/sulfamethoxazole (MIC50, < 0.5 µg/ml) was the most potent drug followed by levofloxacin (MIC50, 0.5 µg/ml), and gatifloxacin (MIC50, 1 µg/ml). The highest susceptibility rates were observed for levofloxacin (78.3%), gatifloxacin (75.6%), and meropenem (72.6%). Ceftazidime (MIC50, 4 µg/ml; 83.1% susceptible) was the most active beta-lactam against B. cepacia. Against Achromobacter spp. isolates, meropenem (MIC50, 0.25 µg/ml; 88% susceptible) was more active than imipenem (MIC50, 2 µg/ml). Cefepime (MIC50, 2 µg/ml; 81.3% susceptible), and imipenem (MIC50, 2 µg/ml; 81.3% susceptible) were more active than ceftazidime (MIC50, >16 µg/ml; 18.8% susceptible) and meropenem (MIC50, 8 µg/ml; 50% susceptible) against Ralstonia pickettii. Since selection of the most appropriate antimicrobial agents for testing and reporting has not been established by the NCCLS for many of NF-GNB species, results from large multicenter studies may help to guide the best empiric therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation and accumulation of toxic amyloid-β peptides (Aβ) in the brain may drive the pathogenesis of Alzheimer's disease. Accordingly, disease-modifying therapies for Alzheimer's disease and related disorders could result from treatments regulating Aβ homeostasis. Examples are the inhibition of production, misfolding, and accumulation of Aβ or the enhancement of its clearance. Here we show that oral treatment with ACI-91 (Pirenzepine) dose-dependently reduced brain Aβ burden in AβPPPS1, hAβPPSL, and AβPP/PS1 transgenic mice. A possible mechanism of action of ACI-91 may occur through selective inhibition of muscarinic acetylcholine receptors (AChR) on endothelial cells of brain microvessels and enhanced Aβ peptide clearance across the blood-brain barrier. One month treatment with ACI-91 increased the clearance of intrathecally-injected Aβ in plaque-bearing mice. ACI-91 also accelerated the clearance of brain-injected Aβ in blood and peripheral tissues by favoring its urinal excretion. A single oral dose of ACI-91 reduced the half-life of interstitial Aβ peptide in pre-plaque mhAβPP/PS1d mice. By extending our studies to an in vitro model, we showed that muscarinic AChR inhibition by ACI-91 and Darifenacin augmented the capacity of differentiated endothelial monolayers for active transport of Aβ peptide. Finally, ACI-91 was found to consistently affect, in vitro and in vivo, the expression of endothelial cell genes involved in Aβ transport across the Blood Brain Brain (BBB). Thus increased Aβ clearance through the BBB may contribute to reduced Aβ burden and associated phenotypes. Inhibition of muscarinic AChR restricted to the periphery may present a therapeutic advantage as it avoids adverse central cholinergic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex physalin metabolites present in the capsules of the fruit of Physalis angulata L. have been isolated and submitted to a series of assays of antimicrobial activity against Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538P, Neisseria gonorrhoeae ATCC 49226, Escherichia coli ATCC 8739; E. coli ATCC 25922, Candida albicans ATCC 10231 applying different methodologies such as: bioautography, dilution broth, dilution agar, and agar diffusion techniques. A mixture of physalins (pool) containing physalins B, D, F, G inhibit S. aureus ATCC 29213, S. aureus ATCC 25923, S. aureus ATCC 6538P, and N. gonorrhoeae ATCC 49226 at a concentration of 200 mg/µl, using agar dilution assays. The mixture was inactive against P. aeruginosa ATCC27853, E. coli ATCC 8739; E. coli ATCC 25922, C. albicans ATCC 10231 when applying bioautography assays. Physalin B (200 µg/ml) by the agar diffusion assay inhibited S. aureus ATCC 6538P by ± 85%; and may be considered responsible for the antimicrobial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The symptomatic phases of many inflammatory diseases are characterized by migration of large numbers of neutrophils (PMN) across a polarized epithelium and accumulation within a lumen. For example, acute PMN influx is common in diseases of the gastrointestinal system (ulcerative colitis, Crohn's disease, bacterial enterocolitis, gastritis), hepatobiliary system (cholangitis, acute cholecystitis), respiratory tract (bronchial pneumonia, bronchitis, cystic fibrosis, bronchiectasis), and urinary tract (pyelonephritis, cystitis). Despite these observations, the molecular basis of leukocyte interactions with epithelial cells is incompletely understood. In vitro models of PMN transepithelial migration typically use N-formylated bacterial peptides such as fMLP in isolation to drive human PMNs across epithelial monolayers. However, other microbial products such as lipopolysaccharide (LPS) are major constituents of the intestinal lumen and have potent effects on the immune system. In the absence of LPS, we have shown that transepithelial migration requires sequential adhesive interactions between the PMN beta2 integrin CD11b/CD18 and JAM protein family members. Other epithelial ligands appear to be abundantly represented as fucosylated proteoglycans. Further studies indicate that the rate of PMN migration across mucosal surfaces can be regulated by the ubiquitously expressed transmembrane protein CD47 and microbial-derived factors, although many of the details remain unclear. Current data suggests that Toll-like receptors (TLR), which recognize specific pathogen-associated molecular patterns (PAMPs), are differentially expressed on both leukocytes and mucosal epithelial cells while serving to modulate leukocyte-epithelial interactions. Exposure of epithelial TLRs to microbial ligands has been shown to result in transcriptional upregulation of inflammatory mediators whereas ligation of leukocyte TLRs modulate specific antimicrobial responses. A better understanding of these events will hopefully provide new insights into the mechanisms of epithelial responses to microorganisms and ideas for therapies aimed at inhibiting the deleterious consequences of mucosal inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 221 strains of Aeromonas species isolated in Mexico from clinical (161), environmental (40), and food (20) samples were identified using the automated system bioMérieux-Vitek®. Antisera for serogroups O1 to 044 were tested using the Shimada and Sakazaki scheme. The K1 antigen was examined using as antiserum the O7:K1C of Escherichia coli. Besides, we studied the antimicrobial patterns according to Vitek AutoMicrobic system. Among the 161 clinical strains 60% were identified as A. hydrophila, 20.4% as A. caviae, and 19.25% as A. veronii biovar sobria. Only A. hydrophila and A. veronii biovar sobria were found in food (55 and 90% respectively) and environmental sources (45 and 10% respectively). Using "O" antisera, only 42.5% (94/221) of the strains were serologically identified, 55% (121/221) were non-typable, and 2.5% (6/221) were rough strains. Twenty-two different serogroups were found, O14, O16, O19, O22, and O34 represented 60% of the serotyped strains. More than 50% of Aeromonas strain examined (112/221) expressed K1 encapsulating antigen; this characteristic was predominant among Aeromonas strains of clinical origin. Resistance to ampicillin/sulbactam and cephazolin was detected in 100 and 67% of Aeromonas strain tested for their susceptibility to antibiotics. In conclusion, antibiotic-resistant Aeromonas species that possess the K1 encapsulating antigen and represent serogroups associated with clinical syndrome in man are not uncommon among Aeromonas strains isolated from clinical, food and environmental sources in Mexico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 296 Shigella spp. were received from State Public Health Laboratories, during the period from 1999 to 2004, by National Reference Laboratory for Cholera and Enteric Diseases (NRLCED) - IOC/Fiocruz, Rio de Janeiro, Brazil. The frequency of Shigella spp. was: S. flexneri (52.7%), S. sonnei (44.2%), S. boydii (2.3%), and S. dysenteriae (0.6%). The most frequent S. flexneri serovars were 2a and 1b. The highest incidence rates of Shigella isolation were observed in the Southeast (39%) and Northeast (34%) regions and the lowest rate in the South (3%) of Brazil. Strains were further analyzed for antimicrobial susceptibility by disk diffusion method as part of a surveillance program on antimicrobial resistance. The highest rates of antimicrobial resistance were to trimethoprim-sulfamethozaxole (90%), tetracycline (88%), ampicillin (56%), and chloramphenicol (35%). The patterns of antimicrobial resistance among Shigella isolates pose a major difficulty in the determination of an appropriate drug for shigellosis treatment. Continuous monitoring of antimicrobial susceptibilities of Shigella spp. through a surveillance system is thus essential for effective therapy and control measures against shigellosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 283 Salmonella Typhimurium strains isolated from cases of human infections and non human sources, were examined for antimicrobial susceptibilityand the incidence of resistance was 38% and multiple resistance (to three or more antimicrobials) was 15%. All 43 multidrug-resistant strains (MDR) and 13 susceptible ones were characterized by phage typing and pulsed- field gel electrophoresis (PFGE). The strains encompassed 14 definitive phage types (DT), three were untypable (UT), and 18 atypicals or reaction does not conform (RDNC), which belonged to 21 PFGE patterns, A1-A21. The predominant phage types were DT49, DT193, and RDNC and two strains belonging to DT 104 and 104b were also identified. The most commum PFGE patterns were A1 and A8. Analysis by PFGE and phage typing demonstrated that the most of the MDR were multiclonal and association among multiresistance, phage typing, and PFGE patterns was not so significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searches for substances with antimicrobial activity are frequent, and medicinal plants have been considered interesting by some researchers since they are frequently used in popular medicine as remedies for many infectious diseases. The aim of this study was to verify the synergism between 13 antimicrobial drugs and 8 plant extracts - "guaco" (Mikania glomerata), guava (Psidium guajava), clove (Syzygium aromaticum), garlic (Allium sativum), lemongrass (Cymbopogon citratus), ginger (Zingiber officinale), "carqueja" (Baccharis trimera), and mint (Mentha piperita) - against Staphylococcus aureus strains, and for this purpose, the disk method was the antimicrobial susceptibility test performed. Petri dishes were prepared with or without dilution of plant extracts at sub-inhibitory concentrations in Mueller-Hinton Agar (MHA), and the inhibitory zones were recorded in millimeters. In vitro anti-Staphylococcus aureus activities of the extracts were confirmed, and synergism was verified for all the extracts; clove, guava, and lemongrass presented the highest synergism rate with antimicrobial drugs, while ginger and garlic showed limited synergistic capacity.