934 resultados para Capture probability
Resumo:
Stochastic modeling of mortality rates focuses on fitting linear models to logarithmically adjusted mortality data from the middle or late ages. Whilst this modeling enables insurers to project mortality rates and hence price mortality products it does not provide good fit for younger aged mortality. Mortality rates below the early 20's are important to model as they give an insight into estimates of the cohort effect for more recent years of birth. It is also important given the cumulative nature of life expectancy to be able to forecast mortality improvements at all ages. When we attempt to fit existing models to a wider age range, 5-89, rather than 20-89 or 50-89, their weaknesses are revealed as the results are not satisfactory. The linear innovations in existing models are not flexible enough to capture the non-linear profile of mortality rates that we see at the lower ages. In this paper we modify an existing 4 factor model of mortality to enable better fitting to a wider age range, and using data from seven developed countries our empirical results show that the proposed model has a better fit to the actual data, is robust, and has good forecasting ability.
Resumo:
The development of methods providing reliable estimates of demographic parameters (e. g., survival rates, fecundity) for wild populations is essential to better understand the ecology and conservation requirements of individual species. A number of methods exist for estimating the demographics of stage-structured populations, but inherent mathematical complexity often limits their uptake by conservation practitioners. Estimating survival rates for pond-breeding amphibians is further complicated by their complex migratory and reproductive behaviours, often resulting in nonobservable states and successive cohorts of eggs and tadpoles. Here we used comprehensive data on 11 distinct breeding toad populations (Bufo calamita) to clarify and assess the suitability of a relatively simple method [the Kiritani-Nakasuji-Manly (KNM) method] to estimate the survival rates of stage-structured populations with overlapping life stages. The study shows that the KNM method is robust and provides realistic estimates of amphibian egg and larval survival rates for species in which breeding can occur as a single pulse or over a period of several weeks. The study also provides estimates of fecundity for seven distinct toad populations and indicates that it is essential to use reliable estimates of fecundity to limit the risk of under- or overestimating the survival rates when using the KNM method. Survival and fecundity rates for B. calamita populations were then used to define population matrices and make a limited exploration of their growth and viability. The findings of the study recently led to the implementation of practical conservation measures at the sites where populations were most vulnerable to extinction. © 2010 The Society of Population Ecology and Springer.
Resumo:
The use of barcode technology to capture data on pharmacists' clinical interventions is described.