997 resultados para Calcium oxide


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Empirical relationships between physical properties determined non-destructively by core logging devices and calibrated by carbonate and opal measurements determined on discrete samples allow extraction of carbonate and opal records from the non-destructive measurements in biogenic settings. Contents of detrital material can be calculated as a residual. For carbonate and opal the correlation coefficients (r) are 0.954 and ?0.916 for sediment density, ?0.816 and 0.845 for compressional-wave velocity, 0.908 and ?0.942 for acoustic impedance, and 0.886 and ?0.865 for sediment color (lightness). Carbonate contents increase in concert with increasing density and acoustic impedance, decreasing velocity and lighter sediment color. The opposite is true for opal. The advantages of deriving the sediment composition quantitatively from core logging are: (i) sampling resolution is increased significantly, (ii) non-destructive data can be gathered rapidly, and (iii) laboratory work on discrete samples can be reduced. Applied to paleoceanographic problems, this method offers the opportunity of precise stratigraphic correlations and of studying processes related to biogenic sedimentation in more detail. Density is most promising because it is most strongly affected by changes in composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Layered Fe-Mn crusts from the off-axis region of the first segment of the Central Indian Ridge north of the Rodrigues Triple Junction were studied geochemically and mineralogically. Vernadite (delta-MnO2) is the main mineral oxide phase. 230Thxs and Co concentrations suggest high growth rates of up to 29 mm/Myr and a maximum age of the basal crust layer of 1 Ma. Whereas most of the major and minor elements show concentrations which are typical of hydrogenetic formation, Co, Pb, Ni and Ti concentrations are strikingly lower. Concentrations and distribution of the strictly trivalent rare-earths and yttrium (REY) are typical of hydrogenetic ferromanganese oxide precipitates, but in marked contrast, the crusts are characterized by negative CeSN (shale normalized) anomalies and (Ce/Pr)SN ratios less than unity. Profiles through the crusts reveal only minor variations of the REY distribution and (Ce/Pr)SN ratios range from 0.45 to 0.68 (compared to ratios of up to 2 for typical hydrogenetic crusts from the Central Indian Basin). The apparent bulk partition coefficients between the crusts and seawater suggest that for the strictly trivalent REY the adsorption-desorption equilibrium has been reached. Positive Ce anomalies in the partition coefficient patterns reveal preferential uptake of Ce, but to a lesser extent than in normal hydrogenetic crusts. A new parameter (excess Ce, Cexs) to quantify the degree of decoupling of Ce from REY(III) is established on the basis of partition coefficients. Cexs/Cebulk ratios suggest that the CIR crusts formed by precipitation of Fe-Mn oxides from a hydrothermal plume and that in hydrothermal plumes and normal seawater the enrichment of Ce results from the same oxidative sorption process. The growth rates, calculated with 230Thxs data as well as with the Co formula, are inversely related to Cexs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Leg 136 drilling was conducted at two sites in pelagic sediments of the north central Pacific Ocean. In this report, pore-water analyses for major seawater constituents, alkalinity, ammonia, nitrate, phosphate, silica, Ba, Fe, Li, Mn, and Sr are presented. Although concentration gradients are generally weak, resulting from slow sedimentation and concomitant diffusive communication with overlying water, there is evidence of sediment/pore-water interactions, associated sediment diagenesis, and formation of authigenic minerals. Bulk major and trace element compositions of the sediments are consistent with reactions inferred to occur within the sediments and with the lithology and mineralogy. Elemental compositions of the sediments are not strongly affected by diagenesis and are primarily related to the dominant mineralogy. Sediments are typical of deep ocean pelagic settings with a significant contribution from the alteration of volcanic ash and the formation of zeolites. Sedimentary rare earth element patterns also provide evidence of active scavenging processes by Mn and Fe oxide phases in the deeper sediments at Site 842.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Authigenic phosphorite crusts from the shelf off Peru (9°40°S to 13°30°S) consist of a facies with phosphatic coated grains covered by younger phosphatic laminite. The crusts are composed of carbonate fluorapatite, which probably formed via an amorphous precursor close to the sediment water interface as indicated by low F/P2O5 ratios, Sr and Ca isotopes, as well as rare earth element patterns agreeing with seawater-dominated fluids. Small negative Ce anomalies and U enrichment in the laminite suggest suboxic conditions close to the sediment-water interface during its formation. Increased contents of chalcophilic elements and abundant sulfide minerals in the facies with phosphatic coated grains as well as in the laminite denote sulfate reduction and, consequently, point to episodical development of anoxic conditions during phosphogenesis. The Peruvian phosphorites formed episodically over an extended period of time lasting from Middle Miocene to Pleistocene. Individual phosphatic coated grains show a succession of phosphatic layers with varying contents of organic matter and sulfide-rich phosphatic layers. Coated grains supposedly formed as a result of episodic suspension caused by high turbulence and shifting redox conditions. Episodic anoxia in the pore water induced pyritization in the outermost carbonate fluorapatite layer. Phosphatic coated grains were later transported to the place of crust formation, where subsequent laminite formation was favored under lower energy conditions. A similar succession of phosphatic layers with varying contents of organic matter and sulfide-rich layers in the laminite suggests a formation mechanism analogous to that of individual coated grains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complete Paleocene section begins with the basal Tertiary Globigerina eugubina Zone. This zone occurs at 465A-3-3, 4 cm to 465A-3-3, 144 cm and belongs to Lithologic Unit I (Site 465 report, this volume), a homogeneous, white, moderately to highly disturbed nannofossil ooze.