967 resultados para CRAB LARVAE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification, caused by increasing atmospheric concentrations of CO2 (refs 1-3), is one of the most critical anthropogenic threats to marine life. Changes in seawater carbonate chemistry have the potential to disturb calcification, acid-base regulation, blood circulation and respiration, as well as the nervous system of marine organisms, leading to long-term effects such as reduced growth rates and reproduction(4,5). In teleost fishes, early life-history stages are particularly vulnerable as they lack specialized internal pH regulatory mechanisms(6,7). So far, impacts of relevant CO2 concentrations on larval fish have been found in behaviour(8,9) and otolith size(10,11), mainly in tropical, non-commercial species. Here we show detrimental effects of ocean acidification on the development of a mass-spawning fish species of high. commercial importance. We reared Atlantic cod larvae at three levels of CO2, (1) present day, (2) end of next century and (3) an extreme, coastal upwelling scenario, in a long-term (2; months) mesocosm experiment. Exposure to CO2 resulted in severe to lethal tissue damage in many internal organs, with the degree of damage increasing with CO2 concentration. As larval survival is the bottleneck to recruitment, ocean acidification has the potential to act as an additional source of natural mortality, affecting populations of already exploited fish stocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular plankton sampling off Plymouth by the Marine Biological Association (MBA) has been carried out from the early 1900s. Much of the sample analysis and description of the results was carried out by Sir Frederick Russell and Professor Alan Southward (AJS), the latter having completed the organisation and transfer of the paper records to digital files. The current authors have transferred the main data files of AJS on zooplankton and fish larvae to the MBA long-term database (including various editing and checking against original analysis records and published data) together with adding the data for 2002-2009. In this report the updated time-series are reviewed in the context of earlier work, particularly with respect to the Russell Cycle. It is not intended as an exhaustive analysis. Brief details of the sampling and comments on data processing are given in an appendix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical distribution of decapod larvae off the northwest Portuguese coast was analysed in relation to associated environmental conditions from sampling during a 69 h period around a current meter mooring located on the shelf, approximately 21 km off the coast. Plankton samples were collected every 2 h at the surface with a neuston net and through the water column with a Longhurst Hardy Plankton Recorder (Pro-LHPR), allowing a very detailed resolution of larval vertical distribution. Environmental data (temperature, salinity, and chlorophyll a) were obtained every hour. To investigate the horizontal distribution of decapod larvae in relation to the coast, a plankton-sampling grid was carried out before the 69 h fixed station. Larvae of shelf decapod species were widely distributed over the shelf, while those of inshore species were found much closer to the coast. Decapod larvae (zoeae and megalopae) showed clear diel vertical migrations, only appearing in the upper 20 m at night, a migration that did not appear to be affected by physical conditions in the water column. Larval densities were highly variable, 0.01 to 215 ind. m super(-3) for zoeae and 0 to 93 ind. m super(-3) for megalopae, the zoeae being generally more abundant. The results indicated that during the day larvae accumulate very close to the bottom. The diel vertical migration behaviour is discussed as one of the contributing mechanisms for larval retention over the shelf, even with offshore transport conditions promoted by coastal upwelling, and is hence of major relevance for the recruitment success of decapod species that inhabit inshore and shelf zones of coastal upwelling systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decapoda taken in Continuous Plankton Recorder (CPR) samples from the Pacific in 1997 and 2000-2003 have been identified and measured. Some previously un-described larval stages were referred to species and characteristics of these are described. Distributions and seasonal occurrence of decapod taxa in the samples are described and discussed with particular emphasis on the dendrobranchiate shrimp Sergestes similis and the brachyurans Cancer spp. And Chionoecetes spp. There is a prolonged larval season at low levels of abundance off the Californian coast but in the more northern waters there is a shorter productive period but numbers of larvae per sample are high, particularly in June. Larvae of Chionoecetes and other Oregoninae were found only from May to July.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-term time series of plankton and benthic records in the North Sea indicates an increase in decapods and a decline in their prey species that include bivalves and flatfish recruits. Here, we show that in the southern North Sea the proportion of decapods to bivalves doubled following a temperature-driven, abrupt ecosystem shift during the 1980s. Analysis of decapod larvae in the plankton reveals a greater presence and spatial extent of warm-water species where the increase in decapods is greatest. These changes paralleled the arrival of new species such as the warm-water swimming crab Polybius henslowii now found in the southern North Sea. We suggest that climate-induced changes among North Sea decapods have played an important role in the trophic amplification of a climate signal and in the development of the new North Sea dynamic regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the mid-1980s the North Sea ecosystem experienced a climate-induced regime shift that has favoured decapods and detritivores in the benthos and jellyfish in the plankton over commercial fisheries. Here, we investigate changes among the Decapoda in the North Sea plankton over the last 60 yr. Decapods are important predators in the plankton and the benthos where they can influence productivity and structure communities. In the North Sea it has been suggested that a climate-driven increase in decapod abundance has been important in propagating the climate signal through the North Sea food web. We show that climate-induced changes in the Decapoda in the central and southern North Sea include the presence of new warm-water taxa, changes in the abundance and proportions of commercial species of shrimp, and an earlier occurrence of decapod larvae in the plankton compared with the period 1981–1983. Notable amongst the warm-water taxa appearing in the North Sea is the predatory swimming crab Polybius henslowii that can swarm in large numbers when conditions are favourable and that is known to exhibit range shifts in response to fluctuations in hydroclimatic forcing. We suggest that climate-induced changes among North Sea decapods have played an important role in the trophic amplification of a climate signal and the development of the new North Sea dynamic regime. Understanding these changes is likely to be imperative for a successful ecosystem-based approach to the future management of North Sea fisheries at a time of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been hypothesized that changes in zooplankton community structure over the past four decades led to reduced growth and survival of prerecruit Atlantic cod (Gadus morhua) and that this was a key factor underlying poor year classes, contributing to stock collapse, and inhibiting the recovery of stocks around the UK. To evaluate whether observed changes in plankton abundance, species composition and temperature could have led to periods of poorer growth of cod larvae, we explored the effect of prey availability and temperature on early larval growth using an empirical trophodynamic model. Prey availability was parameterized using species abundance data from the Continuous Plankton Recorder. Our model suggests that the observed changes in plankton community structure in the North Sea may have had less impact on cod larval growth, at least for the first 40 days following hatching, than previously suggested. At least in the short term, environmental and prey conditions should be able to sustain growth of cod larvae and environmental changes acting on this early life stage should not limit stock recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate effects have been shown to be at least partly responsible for the reorganisation in the plankton ecosystem on the shelf seas of NW Europe over the last 50 years. Most fish larvae feed primarily on zooplankton, so changes in zooplankton quantity, quality and seasonal timing have been hypothesized to be a key factor affecting their survival. To investigate this we have implemented a 1-dimensional trophodynamic growth model of cod larvae for the waters around the UK covering the period 1960 to 2003. Larval growth is modelled as the difference between the amount of food absorbed by the larva and its various metabolic costs. Prey availability is based upon the biomass and size of available preys (i.e. adults and nauplii copepods and cladocerans) taken from the Continuous Plankton Recorder dataset. Temperature and wind forcing are also taken into account. Results suggest that observed changes in plankton community structure may have had less impact than previously suggested. This is because changes in prey availability may be compensated for by increased temperatures resulting in little overall impact on potential larval growth. Stock recovery, at least in the short term is likely to be more dependent upon conserving the year classes recruited to allow spawning stock biomass to rebuild. If as our model suggests, the larvae are still able to survive in the changing environment, reduction in fishing on the adults is needed to allow the stock to recover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dissolution of anthropogenically emitted excess carbon dioxide lowers the pH of the world's ocean water. The larvae of mass spawning marine fishes may be particularly vulnerable to such ocean acidification (OA), yet the generality of earlier results is unclear. Here we show the detrimental effects of OA on the development of a commercially important fish species, the Atlantic herring (Clupea harengus). Larvae were reared at three levels of CO2: today (0.0385 kPa), end of next century (0.183 kPa), and a coastal upwelling scenario (0.426 kPa), under near-natural conditions in large outdoor tanks. Exposure to elevated CO2 levels resulted in stunted growth and development, decreased condition, and severe tissue damage in many organs, with the degree of damage increasing with CO2 concentration. This complements earlier studies of OA on Atlantic cod larvae that revealed similar organ damage but at increased growth rates and no effect on condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution patterns of many species in the intertidal zone are partly determined by their ability to survive and recover from tidal emersion. During emersion, most crustaceans experience gill collapse, impairing gas exchange. Such collapse generates a state of hypoxemia and a hypercapnia-induced respiratory acidosis, leading to hyperlactaemia and metabolic acidosis. However, how such physiological responses to emersion are modified by prior exposure to elevated CO2 and temperature combinations, indicative of future climate change scenarios, is not known. We therefore investigated key physiological responses of velvet swimming crabs, Necora puber, kept for 14 days at one of four pCO(2)/temperature treatments (400 mu atm/10 degrees C, 1000 mu atm/10 degrees C, 400 mu atm/15 degrees C or 1000 mu atm/15 degrees C) to experimental emersion and recovery. Pre-exposure to elevated pCO(2) and temperature increased pre-emersion bicarbonate ion concentrations [HCO3-], increasing resistance to short periods of emersion (90 min). However, there was still a significant acidosis following 180 min emersion in all treatments. The recovery of extracellular acid-base via the removal of extracellular pCO(2) and lactate after emersion was significantly retarded by exposure to both elevated temperature and pCO(2). If elevated environmental pCO(2) and temperature lead to slower recovery after emersion, then some predominantly subtidal species that also inhabit the low to mid shore, such as N. puber, may have a reduced physiological capacity to retain their presence in the low intertidal zone, ultimately affecting their bathymetric range of distribution, as well as the structure and diversity of intertidal assemblages.