836 resultados para CONFIRMATORY FACTOR-ANALYSIS
Resumo:
Applications involving travel behavior from the perspective of land use are dating from the 1990s. Usually, four important components are distinguished: density, diversity and design (3D?s of Cervero and Kockelman) and accessibility (introduced by Geurs and van Wee). But there is not a general agreement on how to measure each of those 4 components. Density is used to be measured as population and employment densities, but others authors separate population density between residential and building densities. A lot of measures have been developed to estimate diversity: among others, a dissimilarity index to indicate the degree to which different land uses lie within one another?s surrounding, an entropy index to quantify the degree of balance across various land use types or proximities to commercial-retail uses. Design has been characterized by site design, and dwelling and street characteristics. Lastly, accessibility has become a frequently used concept, but its meaning on travel behavior field always refers to the ability ?to reach activities or locations by means of a travel mode?, measured as accessibility to jobs, to leisure activities, and others. Furthermore, the previous evidence is mainly based on US data or on north European countries. Therefore, this paper adds some new evidence from a Spanish perspective to the research debate. Through a Madrid smartphone-based survey, factor analysis is used to linearly combine variables into the 3D?s and accessibility dimensions of the built environment. At a first step for future investigations, land use variables will be treated to define accurately the previous 4 components.
Resumo:
The main objective of this paper is the development and application of multivariate time series models for forecasting aggregated wind power production in a country or region. Nowadays, in Spain, Denmark or Germany there is an increasing penetration of this kind of renewable energy, somehow to reduce energy dependence on the exterior, but always linked with the increaseand uncertainty affecting the prices of fossil fuels. The disposal of accurate predictions of wind power generation is a crucial task both for the System Operator as well as for all the agents of the Market. However, the vast majority of works rarely onsider forecasting horizons longer than 48 hours, although they are of interest for the system planning and operation. In this paper we use Dynamic Factor Analysis, adapting and modifying it conveniently, to reach our aim: the computation of accurate forecasts for the aggregated wind power production in a country for a forecasting horizon as long as possible, particularly up to 60 days (2 months). We illustrate this methodology and the results obtained for real data in the leading country in wind power production: Denmark