998 resultados para CONDON ACTIVE VIBRATIONS
Resumo:
This article outlines the outcome of work that set out to provide one of the specified integral contributions to the overarching objectives of the EU- sponsored LIFE98 project described in this volume. Among others, these included a requirement to marry automatic monitoring and dynamic modelling approaches in the interests of securing better management of water quality in lakes and reservoirs. The particular task given to us was to devise the elements of an active management strategy for the Queen Elizabeth II Reservoir. This is one of the larger reservoirs supplying the population of the London area: after purification and disinfection, its water goes directly to the distribution network and to the consumers. The quality of the water in the reservoir is of primary concern, for the greater is the content of biogenic materials, including phytoplankton, then the more prolonged is the purification and the more expensive is the treatment. Whatever good that phytoplankton may do by way of oxygenation and oxidative purification, it is eventually relegated to an impurity that has to be removed from the final product. Indeed, it has been estimated that the cost of removing algae and microorganisms from water represents about one quarter of its price at the tap. In chemically fertile waters, such as those typifying the resources of the Thames Valley, there is thus a powerful and ongoing incentive to be able to minimise plankton growth in storage reservoirs. Indeed, the Thames Water company and its predecessor undertakings, have a long and impressive history of confronting and quantifying the fundamentals of phytoplankton growth in their reservoirs and of developing strategies for operation and design to combat them. The work to be described here follows in this tradition. However, the use of the model PROTECH-D to investigate present phytoplankton growth patterns in the Queen Elizabeth II Reservoir questioned the interpretation of some of the recent observations. On the other hand, it has reinforced the theories underpinning the original design of this and those Thames-Valley storage reservoirs constructed subsequently. The authors recount these experiences as an example of how simulation models can hone the theoretical base and its application to the practical problems of supplying water of good quality at economic cost, before the engineering is initiated.
Resumo:
This thesis presents a novel active mirror technology based on carbon fiber composites and replication manufacturing processes. Multiple additional layers are implemented into the structure in order to provide the reflective layer, actuation capabilities and electrode routing. The mirror is thin, lightweight, and has large actuation capabilities. These features, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Structural redundancy in the form of added material or support structures is replaced by thin, unsupported lightweight substrates with large actuation capabilities.
Several studies motivated by the desire to improve as-manufactured figure quality are performed. Firstly, imperfections in thin CFRP laminates and their effect on post-cure shape errors are studied. Numerical models are developed and compared to experimental measurements on flat laminates. Techniques to mitigate figure errors for thicker laminates are also identified. A method of properly integrating the reflective facesheet onto the front surface of the CFRP substrate is also presented. Finally, the effect of bonding multiple initially flat active plates to the backside of a curved CFRP substrate is studied. Figure deformations along with local surface defects are predicted and characterized experimentally. By understanding the mechanics behind these processes, significant improvements to the overall figure quality have been made.
Studies related to the actuation response of the mirror are also performed. The active properties of two materials are characterized and compared. Optimal active layer thicknesses for thin surface-parallel schemes are determined. Finite element simulations are used to make predictions on shape correction capabilities, demonstrating high correctabiliity and stroke over low-order modes. The effect of actuator saturation is studied and shown to significantly degrade shape correction performance.
The initial figure as well as actuation capabilities of a fully-integrated active mirror prototype are characterized experimentally using a Projected Hartmann test. A description of the test apparatus is presented along with two verification measurements. The apparatus is shown to accurately capture both high-amplitude low spatial-frequency figure errors as well as those at lower amplitudes but higher spatial frequencies. A closed-loop figure correction is performed, reducing figure errors by 94%.
Resumo:
In recent years interest in the production and description of kinin-type substances has been greatly intensified. So, for example, bradykinin, phyllokinin, physalaemin, ranatensin and caerulein could be extracted from the skin of amphibians as well as. eledoisin out of the salivary glands of Eledon moschata. An examination of lampreys seemed to us particularly profitable in the search for the incidence of further kinins. Ammocoetes of different sizes and also adults of both sexes of the species Eudontomyzon danfordi vladykovi were studied in this research. This species is found in many tributaries of the Danube. Skin extracts were tested on on isolated rat uterus, rat duodenum, guinea pig ileum and rabbit jejunum, further tests were done in order to determine a peptide character of the biologically active substance.