862 resultados para COMBINATORIAL TECHNOLOGIES
Resumo:
The R-matrix method when applied to the study of intermediate energy electron scattering by the hydrogen atom gives rise to a large number of two electron integrals between numerical basis functions. Each integral is evaluated independently of the others, thereby rendering this a prime candidate for a parallel implementation. In this paper, we present a parallel implementation of this routine which uses a Graphical Processing Unit as a co-processor, giving a speedup of approximately 20 times when compared with a sequential version. We briefly consider properties of this calculation which make a GPU implementation appropriate with a view to identifying other calculations which might similarly benet.
Resumo:
Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.
Resumo:
Girli Concrete is a cross disciplinary funded research project based in the University of Ulster involving a textile designer/ researcher, an architect/ academic and a concrete manufacturing firm.
Girli Concrete brings together concrete and textile technologies, testing ideas of
concrete as textile and textile as structure. It challenges the perception of textiles as only the ‘dressing’ to structure and instead integrates textile technologies into the products of building products. Girli Concrete uses ‘low tech’ methods of wet and dry concrete casting in combination with ‘high tech’ textile methods using laser cutting, etching, flocking and digital printing. Whilst we have been inspired by recent print and imprint techniques in architectural cladding, Girli Concrete is generated within the depth of the concrete’s cement paste “skin”, bringing the trades and crafts of both industries together with innovative results.
Architecture and Textiles have an odd, somewhat unresolved relationship. Confined to a subservient role in architecture, textiles exist chiefly within the categories of soft furnishings and interior design. Girli Concrete aims to mainstream tactility in the production of built environment products, raising the human and environmental interface to the same specification level as the technical. This paper will chart:
The background and wider theoretical concerns to the project.
The development of Girli Concrete, highlighting the areas where craft becomes
art and art becomes science in the combination of textile and concrete
technologies.
The challenges of identifying funding to support such combination technologies,
working methods and philosophies.
The challenges of generating and sustaining practice within an academic
research environment
The outcomes to date
Resumo:
Pavement surface profiles induce dynamic ride responses in vehicles which can potentially be used to classify road surface roughness. A novel method is proposed for the characterisation of pavement roughness through an analysis of vehicle accelerations. A combinatorial optimisation technique is applied to the determination of pavement profile heights based on measured accelerations at and above the vehicle axle. Such an approach, using low-cost inertial sensors, would provide an inexpensive alternative to the costly laser-based profile measurement vehicles. The concept is numerically validated using a half-car roll dynamic model to infer measurements of road profiles in both the left and right wheel paths.
Resumo:
Three-wave mixing in quasi-periodic structures (QPSs) composed of nonlinear anisotropic dielectric layers, stacked in Fibonacci and Thue-Morse sequences, has been explored at illumination by a pair of pump waves with dissimilar frequencies and incidence angles. A new formulation of the nonlinear scattering problem has enabled the QPS analysis as a perturbed periodic structure with defects. The obtained solutions have revealed the effects of stack composition and constituent layer parameters, including losses, on the properties of combinatorial frequency generation (CFG). The CFG features illustrated by the simulation results are discussed. It is demonstrated that quasi-periodic stacks can achieve a higher efficiency of CFG than regular periodic multilayers.
Resumo:
This paper critically interrogates how borders are produced by scientists, engineers and security experts in advance of the actual deployment of technical devices they develop. This paper explores the prior stages of translation and decision-making as a socio-technical device is conceived and developed. Drawing on in-depth interviews, observations and ethnographic research of the EU-funded Handhold project (consisting of nine teams in five countries), it explores how assumptions about the way security technologies will and should perform at the border shape the way that scientists, engineers, and security experts develop a portable, integrated device to detect CBRNE threats at borders. In disaggregating the moments of sovereign decision making across multiple sites and times, this paper questions the supposed linearity of how science comes out of and feeds back into the world of border security. An interrogation of competing assumptions and understandings of security threats and needs, of competing logics of innovation and pragmatism, of the demands of differentiated temporalities in detection and interrogation, and of the presumed capacities, behaviours, and needs of phantasmic competitors and end-users reveals a complex, circulating and co-constitutive process of device development that laboratises the border itself. We trace how sovereign decisions are enacted as assemblages in the antecedent register of device development itself through the everyday decisions of researchers in the laboratory, and the material components of the Handhold device itself.