1000 resultados para CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::TECNOLOGIA QUIMICA::ALIMENTOS
Resumo:
It presents a solar oven manufactured from MDF boards intended for the baking of foods such as pizza, cakes, breads, hamburgers and the like. They will be given the manufacturing processes and assembly of such an oven which has features of low cost manufacturing. The main feature of the proposed furnace and can be transported to any locations because it is seated on a device for carrying case / backpack. Tests will be conducted for the baking of various foods and their results will be compared with the various types of existing solar ovens shown by the literature. They will analyze the thermal and economic feasibility of such an oven that can provide socialization of the use of solar energy for poor communities and can become a source of generation of employment and income. The proposed solar oven baking has capacity for two foods and can be manufactured to allow multiple simultaneous baking of food.
Resumo:
This paper suggests modifications in coating of electrodes providing an alternative for execution of welding with low hydrogen electrode AWS E7018 without having to dry it, reducing thus the cost and time of manufacturing of high resistance welds. The welds in this research were developed with basic coated electrodes (hygroscopic) – SMAW process – externally painted with aluminum spray paint for high temperatures or wrapped with thin plastic films (PVC) and aluminum foil films used commonly for food protection. The basic premise is that establishing a barrier between the atmosphere and the electrode coating could reduce the effects of high hygroscopicity presented by coatings of low hydrogen, minimizing this way the main source of supply of hydrogen to the fusion pool during welding. It is also expected that the addition of new materials from the electrode coating to the fusion pool would induce metallurgical changes in the deposited metal and, as a consequence, modifications in its mechanical properties. This research dealt with measuring the dissolved hydrogen in the deposited metal after welding with modified electrodes, evaluating the influence of these changes in the produced microstructures and in the mechanical properties of the resulting weld, and comparing the obtained results with the standard welding procedures and with the recently developed waterproof electrodes. The results obtained in most samples welded with modified electrodes showed increased mechanical resistance and increased tenacity due to the increased percentage of acicular ferrite in metal deposited without significant elevation of hardness, when compared with the traditional welding with AWS E7018 electrode and with ELBRÁS BRH4R waterproof electrode. The diffusing hydrogen measured in the modified electrodes was kept inside the parameters defined by international codes.
Resumo:
This paper suggests modifications in coating of electrodes providing an alternative for execution of welding with low hydrogen electrode AWS E7018 without having to dry it, reducing thus the cost and time of manufacturing of high resistance welds. The welds in this research were developed with basic coated electrodes (hygroscopic) – SMAW process – externally painted with aluminum spray paint for high temperatures or wrapped with thin plastic films (PVC) and aluminum foil films used commonly for food protection. The basic premise is that establishing a barrier between the atmosphere and the electrode coating could reduce the effects of high hygroscopicity presented by coatings of low hydrogen, minimizing this way the main source of supply of hydrogen to the fusion pool during welding. It is also expected that the addition of new materials from the electrode coating to the fusion pool would induce metallurgical changes in the deposited metal and, as a consequence, modifications in its mechanical properties. This research dealt with measuring the dissolved hydrogen in the deposited metal after welding with modified electrodes, evaluating the influence of these changes in the produced microstructures and in the mechanical properties of the resulting weld, and comparing the obtained results with the standard welding procedures and with the recently developed waterproof electrodes. The results obtained in most samples welded with modified electrodes showed increased mechanical resistance and increased tenacity due to the increased percentage of acicular ferrite in metal deposited without significant elevation of hardness, when compared with the traditional welding with AWS E7018 electrode and with ELBRÁS BRH4R waterproof electrode. The diffusing hydrogen measured in the modified electrodes was kept inside the parameters defined by international codes.
Resumo:
Following a drop in estrogen in the period of menopause some women begin to lose bone mass more than 1% per year reaching the end of five years with loss greater than 25%. In this regard, factors such as older age, low calcium intake and premature menopause favor the onset of osteoporosis. Preventive methods such as nutritional counseling to a proper diet and the support of technology through applications that assess dietary intake are essential. Thus, this study aimed to develop an application for Android® platform focused on the evaluation of nutritional and organic conditions involved in bone health and risks for developing osteoporosis in postmenopausal women. To achieve this goal we proceeded to a study of 72 women aged 46-79 years, from the physical exercise for bone health of the Laboratory for Research in Biochemistry and Densitometry the Federal Technological University of Paraná program. Data were collected in the second half of 2014 through tests Bone Densitometry and Body Composition, Blood Tests, Anthropometric data and Nutrition Assessment. The study included women with a current diagnosis of osteopenia or osteoporosis primary, aged more than 45 years postmenopausal. For the assessment of bone mineral density and body composition used the device Absorptiometry Dual Energy X-ray (DXA) brand Hologic Discovery TM Model A. For anthropometric assessment was included to body mass, height, abdominal circumference, Waist circumference and hip circumference. The instrument for assessing food consumption was used Recall 24 hours a day (24HR). The estimated intake of energy and nutrients was carried from the tabulation of the food eaten in the Software Diet Pro 4®. In a sub sample of 30 women with osteopenia / osteoporosis serum calcium and alkaline phosphatase tests were performed. The results demonstrated a group of women (n = 30) average calcium intake of 570mg / day (± 340). The analysis showed a mean serum calcium within the normal range (10,20mg / dl ± 0.32) and average values and slightly increased alkaline phosphatase (105.40 U / L ± 23.70). Furthermore, there was a significant correlation between the consumption of protein and the optimal daily intake of calcium (0.375 p-value 0.05). Based on these findings, we developed an application early stage in Android® platform operating system Google®, being called OsteoNutri. We chose to use Java Eclipse® where it was executed Android® version of the project; choice of application icons and setting the visual editor for building the application layouts. The DroidDraw® was used for development of the three application GUIs. For practical tests we used a cell compatible with the version that was created (4.4 or higher). The prototype was developed in conjunction with the Group and Instrumentation Applications Development (GDAI) of the Federal Technological University of Paraná. So this application can be considered an important tool in dietary control, allowing closer control consumption of calcium and dietary proteins.
Resumo:
O processamento térmico de materiais cerâmicos via energia de microondas, no estágio atual, vem ganhando cada dia mais importância, tendo em vista suas inúmeras aplicações, como por exemplo: aplicação de microondas na área de processamento mineral (aquecimento de minérios antes da moagem, secagem, redução carbotérmica de óxidos minerais, lixiviação, fusão, pré-tratamento de minérios e concentrados de ouro refratário, regeneração de carvão, etc. de acordo com Kigman & Rowson, 1998). Em virtude de uma série de vantagens em potencial, frente aos métodos convencionais de aquecimento, como redução no tempo de processamento; economia de energia; diminuição do diâmetro médio das partículas e melhoramento nas propriedades tecnológicas em geral, esta tecnologia vem se destacando. Neste contexto, o objetivo geral deste trabalho, é desenvolver uma pesquisa visando identificar e caracterizar novas opções de matérias-primas cerâmicas como argilas, feldspatos e caulins que sejam eficazes para definir a formulação de uma ou mais massas para produção de componentes de cerâmica estrutural com propriedades físicas, mecânicas e estéticas adequadas após passarem por sinterização convencional e por energia de microondas destacando as vantagens desta última. Além dos requisitos técnicos e de processo, as formulações apresentadas deverão atender às expectativas de preço e de logística de fornecimento. No estudo foram conformados corpos-de-prova por extrusão e prensagem, sinterizados em fornos microondas e convencional, sob ciclos de queima mais rápidos que os atualmente praticados. As matérias-primas foram caracterizadas e analisadas, utilizando as técnicas de fluorescência por raios X (FRX), difração por raios X (DRX), análise térmica diferencial (DTA), análise térmica gravimétrica (DTG), análise granulométrica (AG), microscopia eletrônica de varredura (MEV), absorção d agua (AA), massa especifica aparente (MEA), porosidade aparente (PA), retração linear (RL) e tensão de ruptura e flexão (TRF). Os resultados obtidos indicaram que as propriedades tecnológicas de Absorção de água (AA) e Tensão de Ruptura e flexão (TRF), proposto no trabalho foram adquiridos com sucesso e estão bem além do limite exigido pelas especificações das normas da ABNT NBR 15.270/05 e 15.310/09
Resumo:
Em outubro de 2006, a Regional do Paraná sediou em Curitiba o XX Congresso Brasileiro de Ciência e Tecnologia de Alimentos (XX CBCTA) com o tema Alimentos e Agroindústrias Brasileiras no Contexto Internacional. O objetivo deste Congresso foi discutir o desenvolvimento científico e tecnológico e a inovação na indústria de alimentos no cenário nacional e internacional. O programa científico foi abrangente e diversificado, com Conferências, Palestras, Mesas-Redondas, Curso de Atualização, Clínicas Tecnológicas, Visitas Técnicas e Apresentações de Trabalhos Científicos em oito áreas definidas pelo Congresso. Como resultado da realização do XX CBCTA, esta análise visa uma apresentação e discussão dos indicadores da pesquisa da área de Ciência e Tecnologia de Alimentos do País e contribuição ao desenvolvimento científico e tecnológico da área, bem como subsídios para órgãos de fomento para decisão de investimentos na pesquisa e na formação de recursos humanos. No XX CBCTA, foi apresentado um total de 2066 trabalhos científicos de todo o Brasil, com exceção do Estado de Rondônia. Os trabalhos foram registrados no banco de dados e utilizados para esta análise. As inscrições foram escolhidas de acordo com a área da pesquisa de cada trabalho, sob responsabilidade de cada autor. As áreas definidas pela Comissão Científica do Congresso foram: Embalagem (EB); Método Analítico (MA); Microbiologia, Micotoxicologia e Biotecnologia (MB); Nutrição, Saúde e Alimentação (NA); Processo e Desenvolvimento de Produto (PD); Qualidade de Alimentos (QA); Química e Bioquímica (QB); e Resíduo Agroindustrial e Meio Ambiente (RM). Foi utilizado o Programa da Microsoft® Office Excel para a composição dos gráficos, versão Windows XP.
Resumo:
O entendimento das necessidades dos clientes e a utilização de tecnologia dos alimentos podem tornar uma ideia em um produto inovador. O objetivo deste trabalho foi estudar, por meio de uma pesquisa de mercado, a oportunidade de um novo produto e, posteriormente, elaborar uma salada de frutas frescas, utilizando técnicas de processamento mínimo com métodos combinados. A pesquisa de mercado foi realizada na região metropolitana de Belo Horizonte - MG para estudar o mercado potencial e avaliar a aceitação de uma salada de frutas pronta e embalada. No processo de desenvolvimento do produto, foram selecionadas três formulações, para avaliação sensorial, avaliadas a cada sete dias, durante 21 dias de armazenamento. Na análise de mercado, o produto salada de frutas foi aprovado, enquanto ideia, sendo considerada como ótima e original. Os clientes potenciais se apresentam como abertos a novidades de mercado e a novas marcas. Considera ainda como atributos de decisão de compra, em ordem de prioridade: preço, referência, necessidade, composição e ingredientes, valores nutricionais. No desenvolvimento da salada de frutas, todos os três tipos foram aceitos em análise sensorial com até 21 dias de armazenamento.
Resumo:
Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs
Resumo:
Pipelines for the transport of crude oil from the production wells to the collecting stations are named production lines . These pipes are subjected to chemical and electrochemical corrosion according to the environment and the type of petroleum transported. Some of these lines, depending upon the composition of the fluid produced, may leak within less than one year of operation due to internal corrosion. This work aims at the development of composite pipes with an external protecting layer of high density polyurethane for use in production lines of onshore oil wells, meeting operational requirements. The pipes were manufactured using glass fibers, epoxy resin, polyester resin, quartz sand and high density polyurethane. The pipes were produced by filament winding with the deposition of high density polyurethane on the external surface and threaded ends (API 15 HR/PM-VII). Three types of pipes were manufactured: glass/epoxy, glass/epoxy with an external polyurethane layer and glass/epoxy with an intermediate layer of glass fiber, polyester, sand and with an external polyurethane layer. The three samples were characterized by Scanning Electronic Microscopy (SEM) and for the determination of constituent content. In addition, the following tests were conducted: hydrostatic test, instant rupture, shorttime failure pressure, Gardner impact, transverse stiffness and axial tension. Field tests were conducted in Mossoró RN (BRAZIL), where 1,677 meters of piping were used. The tests results of the three types of pipes were compared in two events: after two months from manufacturing of the samples and after nine months of field application. The results indicate that the glass/epoxy pipes with an intermediate layer of fiber glass composite, polyester e sand and with an external layer of high density polyurethane showed superior properties as compared to the other two and met the requirements of pressure class, axial tensile strength, transverse stiffness, impact and environmental conditions, for onshore applications as production lines
Resumo:
This masther dissertation presents a contribution to the study of 316L stainless steel sintering aiming to study their behavior in the milling process and the effect of isotherm temperature on the microstructure and mechanical properties. The 316L stainless steel is a widely used alloy for their high corrosion resistance property. However its application is limited by the low wear resistance consequence of its low hardness. In previous work we analyzed the effect of sintering additives as NbC and TaC. This study aims at deepening the understanding of sintering, analyzing the effect of grinding on particle size and microstructure and the effect of heating rate and soaking time on the sintered microstructure and on their microhardness. Were milled 316L powders with NbC at 1, 5 and 24 hours respectively. Particulates were characterized by SEM and . Cylindrical samples height and diameter of 5.0 mm were compacted at 700 MPa. The sintering conditions were: heating rate 5, 10 and 15◦C/min, temperature 1000, 1100, 1200, 1290 and 1300◦C, and soaking times of 30 and 60min. The cooling rate was maintained at 25◦C/min. All samples were sintered in a vacuum furnace. The sintered microstructure were characterized by optical and electron microscopy as well as density and microhardness. It was observed that the milling process has an influence on sintering, as well as temperature. The major effect was caused by firing temperature, followed by the grinding and heating rate. In this case, the highest rates correspond to higher sintering.
Resumo:
This work addresses the production of lightweight concrete building elements, such as plates, prefabricated slabs for pre-molded and panels of fencing, presenting a singular concrete: the Lightweight Concrete, with special properties such low density and good strength, by means of the joint use of industrial waste of thermosetting unsaturated polyesters and biodegradable foaming agent, named Polymeric Lightweight Concrete. This study covered various features of the materials used in the composition of the Polymeric Lightweight Concrete, using a planning of factorial design 23, aiming at studying of the strength, production, dosage processes, characterization of mechanical properties and microstructural analysis of the transition zone between the light artificial aggregate and the matrix of cement. The results of the mechanical strength tests were analyzed using a computational statistics tool (Statistica software) to understand the behavior and obtain the ideal quantity of each material used in the formula of the Polymeric Lightweight Concrete. The definition of the ideal formula has the purpose of obtaining a material with the lowest possible dry density and resistance to compression in accordance with NBR 12.646/92 (≥ 2.5 MPa after 28 days). In the microstructural characterization by scanning electron microscopy it was observed an influence of the materials in the process of cement hydration, showing good interaction between the wrinkled face of the residue of unsaturated polyesters thermosetting and putty and, consequently, the final strength. The attaining of an ideal formula, given the Brazilian standards, the experimental results obtained in the characterization and comparison of these results with conventional materials, confirmed that the developed Polymeric Lightweight Concrete is suitable for the production of building elements that are advantageous for construction
Resumo:
The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties