984 resultados para CD45 antigen
Resumo:
Cloning of the T-cell receptor genes is a critical step when generating T-cell receptor transgenic mice. Because T-cell receptor molecules are clonotypical, isolation of their genes requires reverse transcriptase-assisted PCR using primers specific for each different Valpha or Vß genes or by the screening of cDNA libraries generated from RNA obtained from each individual T-cell clone. Although feasible, these approaches are laborious and costly. The aim of the present study was to test the application of the non-palindromic adaptor-PCR method as an alternative to isolate the genes encoding the T-cell receptor of an antigen-specific T-cell hybridoma. For this purpose, we established hybridomas specific for trans-sialidase, an immunodominant Trypanosoma cruzi antigen. These T-cell hybridomas were characterized with regard to their ability to secrete interferon-gamma, IL-4, and IL-10 after stimulation with the antigen. A CD3+, CD4+, CD8- interferon-gamma-producing hybridoma was selected for the identification of the variable regions of the T-cell receptor by the non-palindromic adaptor-PCR method. Using this methodology, we were able to rapidly and efficiently determine the variable regions of both T-cell receptor chains. The results obtained by the non-palindromic adaptor-PCR method were confirmed by the isolation and sequencing of the complete cDNA genes and by the recognition with a specific antibody against the T-cell receptor variable ß chain. We conclude that the non-palindromic adaptor-PCR method can be a valuable tool for the identification of the T-cell receptor transcripts of T-cell hybridomas and may facilitate the generation of T-cell receptor transgenic mice.
Resumo:
The consumption of tomatoes and tomato products has been associated with a reduced risk of prostate cancer. We observed a decrease of 10.77% in prostate-specific antigen (PSA) levels in patients with benign prostate hyperplasia who were submitted to daily ingestion of tomato paste. This was an experimental rather than a controlled study with a sample of 43 men ranging in age from 45 to 75 years, all with histological diagnoses of benign prostate hyperplasia and plasma PSA levels of 4-10 ng/mL. All patients received 50 g of tomato paste once a day for 10 consecutive weeks and PSA levels were analyzed before, during and after the consumption of tomato paste. ANOVA for repeated measures was used to compare PSA levels before, during and after the consumption of tomato paste. The mean ± SD PSA level was 6.51 ± 1.48 ng/mL at baseline and 5.81 ± 1.58 ng/mL (P = 0.005) after 10 weeks. Acceptance was good in 88.3, regular in 9.3, and poor in 2.3% of the patients. Dietary ingestion of 50 g of tomato paste per day for 10 weeks significantly reduced mean plasma PSA levels in patients with benign prostate hyperplasia, probably as a result of the high amount of lycopene in tomato paste. This was not a prostate cancer prevention study, but showed some action of tomato paste in prostate biology. The development of prostate cancer is typically accompanied by an increase in plasma PSA levels, thus any intervention that affects plasma PSA levels can suggest an impact in the progression of disease.
Resumo:
Costimulatory and antigen-presenting molecules are essential to the initiation of T cell immunity to mycobacteria. The present study analyzed by immunocytochemistry, using monoclonal antibodies and alkaline phosphatase-anti-alkaline phosphatase method, the frequency of costimulatory (CD86, CD40, CD40L, CD28, and CD152) and antigen-presenting (MHC class II and CD1) molecules expression on human lung cells recovered by sputum induction from tuberculosis (TB) patients (N = 22) and non-TB controls (N = 17). TB cases showed a statistically significant lower percentage of HLA-DR+ cells than control subjects (21.9 ± 4.2 vs 50.0 ± 7.2%, P < 0.001), even though similar proportions of TB cases (18/22) and control subjects (16/17, P = 0.36) had HLA-DR-positive-stained cells. In addition, fewer TB cases (10/22) compared to control subjects (16/17) possessed CD86-expressing cells (P = 0.04; OR: 0.05; 95%CI = 0.00-0.51), and TB cases expressed a lower percentage of CD86+ cells (P = 0.04). Moreover, TB patients with clinically limited disease (£1 lobe) on chest X-ray exhibited a lower percentage of CD86-bearing cells compared to patients with more extensive lung disease (>1 lobe) (P = 0.02). The lower expression by lung cells from TB patients of HLA-DR and CD86, molecules involved in antigen presentation and activation of T cells, may minimize T cell recognition of Mycobacterium tuberculosis, fostering an immune dysfunctional state and active TB.
Resumo:
Hantavirus cardiopulmonary syndrome (HCPS) has been recognized as an important public heath problem. Five hantaviruses associated with HCPS are currently known in Brazil: Juquitiba, Araraquara, Laguna Negra-like, Castelo dos Sonhos, and Anajatuba viruses. The laboratory diagnosis of HCPS is routinely carried out by the detection of anti-hantavirus IgM and/or IgG antibodies. The present study describes the expression of the N protein of a hantavirus detected in the blood sample of an HCPS patient. The entire S segment of the virus was amplified and found to be 1858 nucleotides long, with an open reading frame of 1287 nucleotides that encodes a protein of 429 amino acids. The nucleotide sequence described here showed a high identity with the N protein gene of Araraquara virus. The entire N protein was expressed using the vector pET200D and the Escherichia coli BL21 strain. The expression of the recombinant protein was confirmed by the detection of a 52-kDa protein by Western blot using a pool of human sera obtained from HCPS patients, and by specific IgG detection in five serum samples of HCPS patients tested by ELISA. These results suggest that the recombinant N protein could be used as an antigen for the serological screening of hantavirus infection.
Resumo:
Hepatitis C virus (HCV) infection is a global medical problem. The current standard of treatment consists of the combination of peginterferon plus ribavirin. This regimen eradicates HCV in 55% of cases. The immune response to HCV is an important determinant of disease evolution and can be influenced by various host factors. HLA class II may play an important role in immune response against HCV. The objective of the present study was to determine the distribution of HLA class II (DRB1 and DQB1) alleles, their association with chronic HCV infection and their response to interferon therapy. One hundred and two unrelated white Brazilian patients with chronic HCV infection, 52 responders (45 males and 7 females) and 50 non-responders (43 males and 7 females) to antiviral treatment, were included in the study. Healthy Brazilian bone marrow donors of Caucasian origin from the same geographic area constituted the control group (HLA-DRB1, N = 99 and HLA-DQB1, N = 222 individuals). HLA class II genotyping was performed using a low-resolution DRB1, DQB1 sequence-specific primer amplification. There were higher frequencies of HLA-DRB1*13 (26.5 vs 14.1%) and HLA-DQB1*02 (52.9 vs 38.7%) in patients compared with controls; however, these were not significantly different after P correction (Pc = 0.39 and Pc = 0.082, respectively). There was no significant difference between the phenotypic frequencies of HLA-DRB1 (17.3 vs 14.0%) and HLA-DQB1 alleles in responder and non-responder HCV patients. The HLA-DRB1*07 allele was significantly more common in HCV patients (33.3 vs 12.1%) than in controls (Pc = 0.0039), suggesting that the HLA-DRB1*07 allele is associated with chronic HCV infection.
Resumo:
Our objective was to determine whether the presence of the human leukocyte antigen HLA-DRB1 locus is associated with production of anti-cyclic citrullinated peptide antibodies (anti-CCP Abs) and to what extent they are associated with increased susceptibility to and severity of rheumatoid arthritis (RA) in Egyptian patients. Twenty-nine RA patients gave informed consent to participate in a case-control study that was approved by the Ain Shams University Medical Ethics Committee. RA disease activity and severity were determined using the simplified disease activity index and Larsen scores, respectively. We used a wide scale national study on the pattern of HLA typing in normal Egyptians as a control study. Anti-CCP Abs and HLA-DRB1 typing were determined for all subjects. The alleles most strongly associated with RA were HLA-DRB1 [*01 , *04 and *06] (41.4%). RA patients with serum anti-CCP Ab titers above 60 U/mL had a significantly higher frequency of HLA-DRB1*01 (58.3%) and HLA-DRB1*04 alleles (83.3%). Significant positive correlations were found between serum and synovial anti-CCP Ab titer, RA disease activity, and severity (r = 0.87, 0.66 and 0.63, respectively; P < 0.05). HLA-DRB1 SE+ alleles [*01 and *04] were highly expressed among Egyptian RA patients. The presence of these alleles was associated with higher anti-CCP Ab titer, active and severe RA disease. Early determination of HLA-DRB1 SE+ alleles and serum anti-CCP Ab could facilitate the prediction of the clinical course and prognosis of RA when first evaluated leading to better disease control.
Resumo:
Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA) and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs) generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL) and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4%) and CD86 (80.13 ± 2.81%)] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL) and IL-12 (249.57 ± 12.51 pg/mL) production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05) than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018), indicating that this recombinant adenovirus can effectively enhance the activity of DCs.
Resumo:
Inhibition of type-5 phosphodiesterase by sildenafil decreases capacitative Ca2+ entry mediated by transient receptor potential proteins (TRPs) in the pulmonary artery. These families of channels, especially the canonical TRP (TRPC) subfamily, may be involved in the development of bronchial hyperresponsiveness, a hallmark of asthma. In the present study, we evaluated i) the effects of sildenafil on tracheal rings of rats subjected to antigen challenge, ii) whether the extent of TRPC gene expression may be modified by antigen challenge, and iii) whether inhibition of type-5 phosphodiesterase (PDE5) may alter TRPC gene expression after antigen challenge. Sildenafil (0.1 µM to 0.6 mM) fully relaxed carbachol-induced contractions in isolated tracheal rings prepared from naive male Wistar rats (250-300 g) by activating the NO-cGMP-K+ channel pathway. Rats sensitized to antigen by intraperitoneal injections of ovalbumin were subjected to antigen challenge by ovalbumin inhalation, and their tracheal rings were used to study the effects of sildenafil, which more effectively inhibited contractions induced by either carbachol (10 µM) or extracellular Ca2+ restoration after thapsigargin (1 µM) treatment. Antigen challenge increased the expression of the TRPC1 and TRPC4 genes but not the expression of the TRPC5 and TRPC6 genes. Applied before the antigen challenge, sildenafil increased the gene expression, which was evaluated by RT-PCR, of TRPC1 and TRPC6, decreased TRPC5 expression, and was inert against TRPC4. Thus, we conclude that PDE5 inhibition is involved in the development of an airway hyperresponsive phenotype in rats after antigen challenge by altering TRPC gene expression.
Resumo:
Reports remain insufficient on whether and how prostate-specific membrane antigen (PSMA) can influence in vivo osseous metastasis of prostate cancer (PCa). In the present study, the authors induced stable expression of PSMA in mouse PCa cell line RM-1. In vivo osseous metastasis was induced in 37 6-week-old female C57BL/6 mice weighing 22.45 ± 0.456 g. RM-1 cells were actively injected into the femoral bone cavity, leading to bilateral dissymmetry of bone density in the femoral bone. Tumor cells were also detected in bone tissue by pathological examination. The impact on bone density was demonstrated by the significant difference between animals injected with RM-PSMA cells (0.0738 ± 0.0185 g/cm²) and animals injected with RM-empty plasmid cells (0.0895 ± 0.0241 g/cm²). The lytic bone lesion of the RM-PSMA group (68.4%) was higher than that of the control group (27.8%). Immunohistochemistry showed that the expression of both vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) was distinctly higher in the RM-PSMA group than in the control group, while ELISA and Western blot assay indicated that VEGF and MMP-9 were higher in the RM-PSMA group compared to the control group (in vitro). Thus, the present study proposed and then confirmed for the first time that PSMA can promote in vivo osseous metastasis of PCa by increasing sclerotic destruction of PCa cells. Further analyses also suggested that PSMA functions positively on the invasive ability of RM-1 by increasing the expression of MMP-9 and VEGF by osseous metastases in vivo
Resumo:
In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.
Resumo:
Idiopathic dilated cardiomyopathy (IDC) has been hypothesized as a multifactorial disorder initiated by an environment trigger in individuals with predisposing human leukocyte antigen (HLA) alleles. Published data on the association between HLA-DR3 antigen and IDC risk are inconclusive. To derive a more precise estimation of the relationship, a meta-analysis was performed. Studies were identified by searching the PUBMED and Embase database (starting from June 2015). A total of 19 case-control studies including 1378 cases and 10383 controls provided data on the association between HLA-DR3 antigen and genetic susceptibility to IDC. Overall, significantly decreased frequency of HLA-DR3 allele (OR=0.72; 95%CI=0.58-0.90; P=0.004) was found in patients with IDC compared with controls. When stratified by myocardial biopsy or non-biopsy cases, statistically decreased risk was found for IDC in myocardial biopsy cases (OR=0.69; 95%CI=0.57-0.84; P=0.0003). In the subgroup analysis by ethnicity, borderline statistically significantly decreased risk was found among Europeans from 12 case-control studies (OR=0.76; 95%CI=0.58-1.00; P=0.05). In conclusion, our results suggest that individuals with HLA-DR3 antigen may have a protective effect against IDC.
Resumo:
Although they are considered as antigen presenting cells (APC), the role of antigen-unspecific B-lymphocytes in antigen presentation and T lymphocyte stimulation remains controversial. In this paper, we tested the capacity of normal human peripheral activated B cells to stimulate T cells using melanoma antigens or melanoma cell lysates. B lymphocytes activated through CD40 ligation and then pulsed with tumor antigens efficiently processed and presented MHC class II restricted peptides to specific CD4+ T cell clones. This suggests that CD40-activated B cells have the functional and molecular competence to present MHC class II epitopes when pulsed with exogenous antigens, thereby making them a relevant source of APC to generate T cells. To test this hypothesis, CD40-activated B cells were pulsed with a lysate prepared from melanoma cells and used to stimulate peripheral autologous T cells. Interestingly, T cells specific to melanoma antigens were generated. Further analysis of these T cell clones revealed that they recognized MHC class II restricted epitopes from tyrosinase, a known melanoma tumor antigen. The efficient antigen presentation by antigen-unspecific activated B cells was correlated with a down-regulation in the expression of HLA-DO, a B cell specific protein known to interfere with HLA-DM function. Because HLA-DM is important in MHC class II peptide loading, the observed decrease in HLA-DO may partially explain the enhanced antigen presentation following B-cell activation. Results globally suggest that when they are properly activated, antigen-unspecific B-lymphocytes can present exogenous antigens by MHC class II molecules and stimulate peripheral antigen-specific T cells. Antigen presentation by activated B cells could be exploited for immunotherapy by allowing the in vitro generation of T cells specific against antigens expressed by tumors or viruses.
Resumo:
La réplique provient de Réjean Lapointe, Jacques Thibodeau et Patrick Hwu; Réjean Lapointe et Jacques Thibodeau sont affiliés à la faculté de médecine de l'Université de Montréal
Resumo:
Contexte. Les phénotypes ABO et Rh(D) des donneurs de sang ainsi que des patients transfusés sont analysés de façon routinière pour assurer une complète compatibilité. Ces analyses sont accomplies par agglutination suite à une réaction anticorps-antigènes. Cependant, pour des questions de coûts et de temps d’analyses faramineux, les dons de sang ne sont pas testés sur une base routinière pour les antigènes mineurs du sang. Cette lacune peut résulter à une allo-immunisation des patients receveurs contre un ou plusieurs antigènes mineurs et ainsi amener des sévères complications pour de futures transfusions. Plan d’étude et Méthodes. Pour ainsi aborder le problème, nous avons produit un panel génétique basé sur la technologie « GenomeLab _SNPstream» de Beckman Coulter, dans l’optique d’analyser simultanément 22 antigènes mineurs du sang. La source d’ADN provient des globules blancs des patients préalablement isolés sur papiers FTA. Résultats. Les résultats démontrent que le taux de discordance des génotypes, mesuré par la corrélation des résultats de génotypage venant des deux directions de l’ADN, ainsi que le taux d’échec de génotypage sont très bas (0,1%). Également, la corrélation entre les résultats de phénotypes prédit par génotypage et les phénotypes réels obtenus par sérologie des globules rouges et plaquettes sanguines, varient entre 97% et 100%. Les erreurs expérimentales ou encore de traitement des bases de données ainsi que de rares polymorphismes influençant la conformation des antigènes, pourraient expliquer les différences de résultats. Cependant, compte tenu du fait que les résultats de phénotypages obtenus par génotypes seront toujours co-vérifiés avant toute transfusion sanguine par les technologies standards approuvés par les instances gouvernementales, les taux de corrélation obtenus sont de loin supérieurs aux critères de succès attendus pour le projet. Conclusion. Le profilage génétique des antigènes mineurs du sang permettra de créer une banque informatique centralisée des phénotypes des donneurs, permettant ainsi aux banques de sang de rapidement retrouver les profiles compatibles entre les donneurs et les receveurs.
Caractérisation du facteur hématopoïétique spécifique MNDA (Myeloid Nuclear Differentiation Antigen)
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.